Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
17 tháng 10 2020 lúc 13:22

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 10 2020 lúc 18:48

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

Khách vãng lai đã xóa
phan tuấn anh
Xem chi tiết
alibaba nguyễn
7 tháng 1 2017 lúc 9:15

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

alibaba nguyễn
7 tháng 1 2017 lúc 9:29

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé

phan tuấn anh
7 tháng 1 2017 lúc 10:34

thank nha 

senorita
Xem chi tiết
Teendau
Xem chi tiết
LIVERPOOL
Xem chi tiết
Rau
2 tháng 7 2017 lúc 20:03

Đây là đề thi TS 10 chuyến toán  quốc học 2013-2014 
:D Rất hạnh phúc vì bạn chép sai đề .

LIVERPOOL
3 tháng 7 2017 lúc 10:58

De chuan

Linh_Chi_chimte
Xem chi tiết
Trần Nguyễn Khánh Linh
8 tháng 1 2018 lúc 20:37

1.trừ từng vế 2 pt có \(x+y-xy=1\)

\(< =>\left(x-1\right)\left(y-1\right)=0\)......

2.Cộng từng vế 2 pt có

\(\sqrt{x}+\sqrt{y}+\sqrt{x+1}+\sqrt{y+1}=2\)

mà đk là x;y\(\ge0\)nên vt\(\ge2\)

dấu = xr <=>x=y=0

Võ Hồng Phúc
Xem chi tiết
Incursion_03
26 tháng 7 2019 lúc 14:33

\(ĐKXĐ:x;y\ge2\)

Trừ 2 vế của hệ cho nhau ta được

\(\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{y-2}-\sqrt{x-2}\right)=0\)

\(\Leftrightarrow\frac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\frac{y-2-x+2}{\sqrt{y-2}+\sqrt{x-2}}=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}-\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)(1)

Vì \(\sqrt{x+1}+\sqrt{y+1}>\sqrt{x-2}+\sqrt{y-2}\)

\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}< \frac{1}{\sqrt{x-2}+\sqrt{y-2}}\)

\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}< 0\)(2)

Từ (1) và (2) => x - y = 0

                    <=> x = y

Thay vào 1 trong 2 pt ban đầu có

\(\sqrt{x+1}+\sqrt{x-2}=3\)

\(\Leftrightarrow x+1+2\sqrt{\left(x+1\right)\left(x-2\right)}+x-2=9\)

\(\Leftrightarrow\sqrt{x^2-x-2}=5-x\)

\(\Leftrightarrow\hept{\begin{cases}x\le5\\x^2-x-2=25-10x+x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le5\\9x=27\end{cases}}\)

\(\Leftrightarrow x=3\left(tmĐKXĐ\right)\)

Vậy pt có nghiệm duy nhất x = 3

Nhi Đào Quỳnh
Xem chi tiết
Không Tên
25 tháng 2 2020 lúc 16:56

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

Khách vãng lai đã xóa
Nguyễn Minh Sang
Xem chi tiết