Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CHU ANH TUẤN
Xem chi tiết
Duong Minh Hieu
Xem chi tiết
Thám tử trung học Kudo S...
31 tháng 5 2017 lúc 12:05

 Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

Nguyễn Hà Vy
Xem chi tiết
Nguyễn Hùng Dũng
2 tháng 5 2021 lúc 13:35
Đéo biết hoặc không biết. ok!!
Khách vãng lai đã xóa
Trần Văn Nghiệp
Xem chi tiết
Nguyễn Tuấn Minh
3 tháng 4 2017 lúc 20:44

Với x=0 thì x.f(x-2)=(0-4).f(x)=0

=> f(0)=0

Với x=4 thì x-4=0  => 4.f(2)=0.f(4)=0

=>f(2)=0

Vậy đa thức f(x) có ít nhất 2 nghiệm

Cao Thị Ngọc Hằng
3 tháng 4 2017 lúc 20:22

à bài này....mk quên cách làm rồi,hihi sorry bạn nha,tiếc quá mk ko giúp được bạn

Nhóc_Siêu Phàm
3 tháng 4 2017 lúc 20:42

con hằng có trả lời đâu!Ai tk cho nó z?Tôi muốn có 1 cái tên!!!!

Trần Bảo Ngọc
Xem chi tiết
Nguyễn Duy Long
24 tháng 4 2016 lúc 14:35

-Cho x=0=>0.f(1)=2.f(0)

           =>   0   =2.f(0)

           =>  f(0)=0

Vậy x=0 là nghiệm của f(x) (1)

-Cho x=-2=> -2.f(-1)=0.f(-2)

              => -2.f(-1)=0

              => f(-1)=0

Vậy x=-1 là nghiệm của f(x) (2)

Từ (1) và (2)=> f(x) có ít nhất 2 nghiệm phân biệt (đpcm)

Ghi chú: Ở đây mình xét 2 giá trị của x sao cho một vế bằng 0 rồi đi tìm nghiệm của f(x) chứ không phải là xét giá trị của x để suy ra nó là nghiêm của f(x) bạn nhé!!!

Thu Trang
Xem chi tiết
Vũ Anh Khôi
1 tháng 7 2024 lúc 9:01

F(5)=0

Trần Văn Nhâm
Xem chi tiết
Trần Văn Nhâm
Xem chi tiết
Trần Văn Nhâm
Xem chi tiết
Lê Chí Cường
13 tháng 8 2015 lúc 11:02

a)x.f(x + 1) - ( x + 2). f( x) = 0 (1) 
*Với x=0 thì (1) 0.f(1) – 2.f(0) =0 f(0)=0. Vậy f(x) có một nghiệm là 0. 
*Với x=-2 thì (1) -2.f(-1) – 0.f(0) =0 f(-1)=0. Vậy f(x) có một nghiệm là -1. 
KL: Vậy f(x) có ít nhất hai nghiệm là 0 và -1(ĐPCM).

Lê Chí Cường
13 tháng 8 2015 lúc 11:06

Cách khác:

a)Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

Phan Thị Ngọc Quyên
25 tháng 3 2017 lúc 17:58

 từ pt x.f(x+1) = f( x+ 2) .f(x) 
xét x= 0 
pt có dạng 0= f(2).f(0) 
vậy hoặc f(2) = 0 hoặc f(0) = 0 
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0 
KL pt f(x) = 0 có ít nhất 2 nghiệm