Cho a là 1 số nguyên.Chứng tỏ rằng: \(a^2\ge0;-a^2\le0\)
cho a,b là các số nguyên,biết 7a+3b/19 là số nguyên.Chứng tỏ rằng-4a+b/19 cũng là 1 số nguyên
Cho x, y là các số nguyên.Chứng tỏ rằng 2x+3y chia hết cho 17 khi và chỉ khi 9x+5y chia hết cho 17
Đặt A = 2x + 3y , B = 9x + 5y
Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)
= (18x + 27y) - (18x + 10y)
= 18x + 27y - 18x - 10y
= 17y
Do A chia hết cho 17 => 9A chia hết cho 17
Mà 17y chia hết cho 17 => 2B chia hết cho 17
Mà (2,17)=1 => B chia hết cho 17
Chứng tỏ 2x+3y chia hết cho 9x=5y khi và chỉ khi 9x+5y chia hết cho 17
tổng hai phân số tối giản là một số nguyên.Chứng tỏ rằng ,mẫu hai phân số đó là hai số bằng hoặc đối nhau
cho a là số nguyên.Chứng minh rằng
a)nếu a là dương thì số liền sau a cũng là số nguyên dương
Lỡ sai đừng trách nha:
Nếu a là số dương thì số liền sau của a là a+1. a là số nguyên dương, 1 cũng là số nguyên dương=> a+1 cũng là 1 số nguyên dương.
Vậy nếu a là số nguyên dương thì số liền sau của a cũng là 1 số nguyên dương
Cho a là số nguyên.Chứng minh rằng:|a|<5 tương đương -5<a<5
TH1: nếu số đối của a=a thì a<5
TH2: nếu số đối của a=-a thì -a<5
a>-5
Cho a là số nguyên.Chứng minh rằng:|a|<5 <=>(-5)<a<5
Xét |a|\(< 5\)=> \(a^2< 25\)=>a2-25<0 => ( a-5)(a+5) <0 => a-5 và a+5 trái dấu nhau
mà a+5>a-5
=> a+5>0 và a-5<0
=> a>-5 và a<5 => -5<a<5
vì | a | \(\ge\)0 mà | a | < 5 nên 0 \(\le\)a < 5
Lập bảng ta có :
|a| | 0 | 1 | 2 | 3 | 4 |
a | 0 | \(\orbr{\begin{cases}1\\-1\end{cases}}\) | \(\orbr{\begin{cases}2\\-2\end{cases}}\) | \(\orbr{\begin{cases}3\\-3\end{cases}}\) | \(\orbr{\begin{cases}4\\-4\end{cases}}\) |
\(\Rightarrow\)a \(\in\){ -4 ; -3 ; ... ; 3 ; 4
\(\Leftrightarrow\)-5 < a < 5
Cho x,y là 2 số nguyên.Chứng tỏ rằng:
a)Cho A=(2x+5y)(11x+8y) chia hết cho 13 chứng tỏ A chia hết cho 169
b) Nếu 4x+7y chia hết cho 23 thì 11x+2y chia hết cho 23
c) Nếu 3x+12y chia hết cho 13 thì 10x+y chia hết cho 13
Chờ x,y là các số nguyên.Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.Điều ngược lại có đúng không?
Cho a là số nguyên.Chứng minh rằng biểu thức sau là ình phương của một số nguyên:
B=\(a^4-4a^2-2a^2+12a+9\)