Cho 2a-b=7.Tìm GTBT \(P=\frac{5a-b}{3a+7}-\frac{3b-2a}{2b-7}\)
cho : 2a-b=7. với b khác 7/2; b khác -7/3. tính P= \(\frac{5a-b}{3a+7}-\frac{3b-2a}{2b-7}\)
Choa 2a-b=7
Tính \(M=\frac{5a-b}{3a+7}-\frac{3b-2}{2b-7}\)
trình bày cách làm nữa nha
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}vsa-b=7\left(a\ne-\frac{7}{2};b\ne\frac{7}{2}\right)\)
Ta có: \(a-b=7\)
\(\Rightarrow b-a=-7\)
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(B=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b+\left(b-a\right)}{2b-7}\)
\(B=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\)
\(B=1+1\)
\(B=2\)
Vậy \(B=2\)
Tham khảo nhé~
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b-\left(a-b\right)}{2b-7}\)
\(=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\) (vì a - b = 7)
\(=1+1=2\)
Tính gtrị bthức
\(A=\frac{2a-5b}{a-3b}\)với\(\frac{a}{b}=\frac{6}{8}\)
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)với a-b=7
***** Ta có \(A=\frac{2a-5b}{a-3b}\)Mà \(\frac{a}{b}=\frac{6}{8}\Leftrightarrow b=\frac{8a}{6}=\frac{4}{3}a\)Thay b vào biểu thức A , ta có : \(\frac{2a-5.\frac{4}{3}a}{a-3.\frac{4}{3}a}=\frac{a\left(2-5.\frac{4}{3}\right)}{a\left(1-3.\frac{4}{3}\right)}=\frac{-14}{3}:\left(-3\right)=\frac{14}{9}\)Vậy \(A=\frac{14}{9}\)
***** Ta có \(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)MÀ a-b=7 => a = b+7 . Thay a = b+7 vào biểu thức B , ta có \(\frac{3.\left(7+b\right)-b}{2\left(7+b\right)+7}+\frac{3b-\left(7+b\right)}{2b-7}=\frac{21+3b-b}{14+2b+7}+\frac{3b-7-b}{2b-7}\)=>>>>> \(\frac{21+2b}{21+2b}+\frac{2b-7}{2b-7}=1+1=2\)(k mình nha )
1. Cho \(\frac{a}{2b+3c}=\frac{b}{2c+3a}=\frac{c}{2a+3b}\). Chứng minh \(a=b=c\).
2. Cho \(\frac{a}{5b-2c}=\frac{b}{5c-2a}=\frac{c}{5a-2b}\). Chứng minh \(a=b=c\).
Lưu ý: Giải theo cách lớp 7
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a)\(\frac{2a-5b}{a-3b}\)với \(\frac{a}{b}=\frac{3}{4}\)
b)\(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}v\text{ới}\)\(a-b\ne3,5;b\ne3,5\)
Ta có :
\(\frac{a}{b}=\frac{3}{4}\)\(\Rightarrow\)\(a=3k;b=4k\)\(\left(k\in\right)ℤ\)
Suy ra :
\(\frac{2a-5b}{a-3b}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-14}{-9}=\frac{14}{9}\)
cho a^2=bc, cmr
a/ \(\frac{c}{2a-5c}\)=\(\frac{a}{2b-5a}\)
b/\(\frac{3a-7c}{2a+5c}\)=\(\frac{3b-7a}{2b+5a}\)
c/\(\frac{2a^2-c^2}{a^2+3c^2}\)=\(\frac{2b^2-a^2}{b^2+3a^2}\)
a/ Ta có \(a\left(2a-5c\right)=2a^2-5ac=2bc-5ac=c\left(2b-5a\right)\Rightarrow\frac{c}{2a-5c}=\frac{a}{2b-5a}\)
Các câu khác làm tương tự
Cho a2 = bc
CMR:
a,\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
b,\(\frac{c}{2a-5c}=\frac{a}{2b-5a}\)
c,\(\frac{3a-7c}{2a+5c}=\frac{3b-7a}{2b+5a}\)
d,\(\frac{2a^2-c^2}{a^2+3c^2}=\frac{2b^2-a^2}{b^2+3a^2}\)
cho a ≠ \(\dfrac{-7}{3}\); b ≠\(\dfrac{7}{2}\) và 2a-b=7. Tính giá trị của biểu thức: \(\dfrac{5a-b}{3a+7}-\dfrac{3b-2a}{2b-7}\)
\(\dfrac{5a-b}{3a+7}\)-\(\dfrac{3b-2a}{2b-7}\)
=\(\dfrac{5a-b}{3a+2a-b}\)-\(\dfrac{3b-2a}{2b-\left(2a-b\right)}\)
=\(\dfrac{5a-b}{5a-b}\)-\(\dfrac{3b-2a}{2b-2a+b}\) (vì 2a-b=7)
=\(\dfrac{5a-b}{5a-b}\)-\(\dfrac{3b-2a}{3b-2a}\)
=1-1
=0