Tìm a để 2 pt sau tuuwowng đương nhau : \(x^2+x+a=0\) và \(x^2+ax+1=0\)
tìm a để 2 pt: x^2+ax +1=0 và x^2 -x-a=0 có nghiệm chung
tự xét delta tìm đk của a để pt có nghiệm nhé
pt (1)\(\int^{x_1+x_2=-a}_{x_1x_2=1}\)(viet)
pt(2):\(\int^{x_1+x_2=1}_{x_1x_2=-a}\)(ciet)
vì 2 pt có 2 nghiệm chung nên -a=1<=>a=-1(L)
Vậy 2 pt không thể có nghiệm chung
Tìm các giá trị của m, a và b để các cặp phương trình sau đây tương đương :
a. mx^2 - (m+1)x + 1 = 0 và (x-1)(2x-1) = 0
b. (x-3)(ax+2) = 0 và (2x + b)(x+1) = 0
a) (x-1)(2x-1)=0
<=>2x^2 - 3x + 1 =0
Căn bằng hệ số ta có \(\hept{\begin{cases}m=2\\-\left(m+1\right)=-3\\1=1\end{cases}}\)<=>m=2
Tìm các giá trị của a, b để cặp phương trình sau đây tương đương:
( x - 3)( ax + 2) = 0 và ( 2x + b)( x +1) = 0
cho 2 pt: \(\int^{x^2+x+a=0}_{x^2+ax+1=0}\). tìm các giá trị của a để 2 pt:
a) tương đương với nhau
b) có ít nhất một nghiệm chung
b) Giả sử xo là một nghiệm chung của 2 PT> Khi đó ta có: \(\int^{x_0^2+x_0+a=0}_{x_0^2+ax_0+1=0}\)
Trừ 2 vế của 2 PT ta có: \(x_0\left(1-a\right)+a-1=0\Leftrightarrow\left(x_0-1\right)\left(1-a\right)=0\)<=> xo = 1 hoặc a = 1 (TM vì khi đó 2 PT tương đương)
xo = 1 => 1+1+a=0 => a=-2
tìm m để 2 pt sau tương đương
\(x^2+x+m=0\left(1\right)\)
\(x^2+mx+1=0\left(2\right)\)
\(\left(1\right)\Leftrightarrow m=-x^2-x\)
Thay vào (2)
\(\left(2\right)\Leftrightarrow x^2-\left(x^2+x\right)x+1=0\\ \Leftrightarrow1-x^3=0\\ \Leftrightarrow\left(1-x\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow x=1\left(x^2+x+1>0\right)\\ \Leftrightarrow m=-1-1=-2\)
cho pt: mx +3m=3x-2 (1)
a) tìm m để pt(1) tương đương với pt (x-2)^2-x(x-3)-3=0 (2)
b)tìm điều kiện m để pt (1) vô nghiệm
c)tìm m để pt (1) có nghiệm duy nhất nguyên
Tìm các giá trị của a,b để cặp phương trình sau đây tương đương
(x-3)(ax+2) = 0 và (2x+b)(x+1) = 0
Tìm giá trị của a,x,b để 2 phương trình tương đương:
(x-3)(ax+2)=0 và (2x+b)(x+4)=0
Có : \(\left(x-3\right)\left(ax+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\ax+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{2}{a}\end{cases}}\) (1)
Có : \(\left(2x+b\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+b=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{b}{2}\\x=-4\end{cases}}\) (2)
Từ (1) và (2)
\(\Leftrightarrow\hept{\begin{cases}-\frac{2}{a}=-4\\-\frac{b}{2}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-6\end{cases}}\)
Vậy để 2 phương trình trên tương đương thì \(x\in\left\{-4;3\right\}\)và \(\left(a;b\right)\in\left\{\left(\frac{1}{2};-6\right)\right\}\)
tìm các giá trị của m,a và b để cặp phương trình sau đây tương đương với nhau mx^2-(m+1)x+1=0 và (x-1)(2x-1)=0