Cho\(\Delta ABC\),lấy M tùy ý trong tam giác ,kẻ MH,MI,MK lần lượt vuông góc với AB,AC,BC.Chứng minh \(AI^2+BH^2+CK^2=AH^2+BK^2+CI^2\)
Cho tam giác ABC. Lấy điểm M tùy ý trong tam giác. Kẻ MH, MI, MK lần lượt vuông góc với AB. AC. BC. Chứng minh rằng:
\(AI^2+BH^2+CK^2=AH^2+BK^2+CI^2\)
CHO TAM GIÁC ABC TỪ M BẤT KÌ NẰM TRONG TAM GIÁC KẺ MH,MI,MK LẦN LƯỢT VUÔNG GÓC VỚI AB,AC,BC . CMR AH^2+BK^2+CI^2=AI^2+BH^2+CK^2
Vì tam giác HMA vuông tại H nên theo định lí py-ta-go,có:
\(HA^2+HM^2=AM^2\)(1)
Tương tự ta có:
\(HM^2+HB^2=BM^2\) (2)
\(BK^2+KM^2=BM^2\)(3)
\(KM^2+KC^2=MC^2\)(4)
\(IM^2+IC^2=MC^2\)(5)
\(AI^2+IM^2=AM^2\)(6)
Cộng (1),(3),(5) vế theo vế, có:
\(HA^2+HM^2+BK^2+KM^2+IC^2+IM^2=AM^2+BM^2+MC^2\)
Cộng (2),(4),(6) vế theo vế, có:
\(HB^2+HM^2+KM^2+KC^2+AI^2+IM^2=AM^2+BM^2+MC^2\)Từ (*) và (**), có:
\(HA^2+HM^2+BK^2+KM^2+IC^2+IM^2=BH^2+HM^2+KM^2+KC^2+AI^2+IM^2\)=> \(HA^2+BK^2+IC^2=BH^2+KC^2+AI^2\)
Vậy có đpcm...
( mk ghi tóm tắt thôi, bạn nhớ ghi cụ thể. Hình tự vẽ nha)
Vẽ tam giác ABC nhọn . Trong tam giác ABC lấy điểm O . Vẽ OK sao cho vuông góc với AB, vẽ OI vuông góc với AC, vẽ OH vuông góc với BC . Chứng Minh AI^2+ BK^2+CH^2=AC^2+BH^2+CI^2
Cho tam giác ABC có AB = 9cm, BC = 15 cm , AC = 12 cm
1) cm tam giác abc là tam giác vuông.
2) vẽ trung tuyến am , kẻ mh vuông góc ac . Trên tia đối mh lấy k sao cho mk=mh . Cm tam giác bkm = tam giác chm. Từ đó cm Bk // Ac .
3) cm bk = ah.
4 ) bh cắt am tại g . Cm g là trọng tâm tam giác abc.
5) Kẻ mi vuông góc ab tại i .cm c,g,i thẳng hàng
cho tam giác abc cân tại a vẽ bh vuông góc với ac lấy điểm m tùy ý trên cạnh bc . vẽ mk vuông góc với ab ,mi vuông góc với ac . chứng minh MK+MI=BH
Kẻ ME vuông góc BH
=>ME//AC
Xét ΔKBM vuông tại K và ΔEMB vuông tại E có
BM chung
góc KBM=góc EMB
=>ΔKBM=ΔEMB
=>MK=BE
Xét tứ giác EHIM có
EH//IM
EM//IH
=>EHIM là hình bình hành
=>MI=EH
=>MK+MI=BH
cho tam giác
ABC Vuông tại A.M là trung điểm của AB,kẻ MH vuông góc với BC.chứng minh CH^2-BH^2=AC^2
Cho tam giác ABC vuông tại A có AB=9 cm. Gọi M là trung điểm của BC, kẻ MH vuông góc với AC. Trên tia đối tia MH lấy điểm K sao cho MK=MH 1. Tính độ dài AC ?
2. Chứng minh tam giác MHC=tam giác MKB.
3. Chứng minh AH=BK.
4. Goi G là giao điểm của AM và BH, tia CG cắt AB tại I(i). Chứng minh IA=IB
Giúp em với
B1:Tam giác ABC vuông tại A. điểm M bất kì trong tam giác. Từ M kẻ MI;ME;MK lần lượt vuông góc với BC:AC;AB.Tìm vị trí của M để MI^2+ME^2+MK^2 min
B2:Cho tam giác ABC vuong tạo A.Trên AB,BC,CA lấy K;M;N sao cho tam giác MNK vuông cân tại K. kẻ MH vuông góc với AB=H.
1,CMR tam giác AMK=tam giác AKN
2,Xác định K;M;N để diện tích tam giác K;M;N nhỏ nhất
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH