chứng minh rằng với mọi số nguyên n A= \(4n^4+12n^3+5n^2-6n+1\)luôn là một số chính phương
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
1. Đặt với
Nhưng vì nên . Vậy
2. Gọi
Vậy nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó . Nhưng vì cả 2 số đều là số lẻ nên chúng không thể có ƯC là 2. Vậy
1. Đặt với
Nhưng vì nên . Vậy
2. Gọi
Vậy nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó . Nhưng vì cả 2 số đều là số lẻ nên chúng không thể có ƯC là 2. Vậy
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Chứng minh rằng các số sau nguyên tố cùng nhau ( n thuộc N)
a) 5n+3; 3n+2
b) 4n+3; 6n+4
c) 12n+5; 5n+2
a, Gọi ƯCLN(5n + 3, 3n + 2) = d
Ta có: \(\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\)
=> 15n + 10 - (15 n + 9) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
b, Gọi ƯCLN(4n + 3, 6n + 4) = d
Ta có: \(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}12n+9⋮d\\12n+8⋮d\end{cases}}}\)
=> 12n + 9 - (12n + 8) chia hết cho d
=> 1 chia hết cho d
=> d thuộc {1;-1}
Vậy...
c, Gọi ƯCLN(12n + 5, 5n + 2) = d
Ta có: \(\hept{\begin{cases}12n+5⋮d\\5n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n+25⋮d\\60n+24⋮d\end{cases}}}\)
=> 60n + 25 - (60n + 24) chia hết cho d
=> 1 chia hết cho d
=> d = {1;-1}
Vậy...
Gọi d là ƯCLN của 5n + 3 và 3n + 2
Khi đó : 5n + 3 chia hết cho d , 3n + 2 chia hết cho d
=> 15n + 9 chia hết cho d , 15n + 10 chia hết cho d
=> 15n + 10 - 15n - 9 = 1 chia hết cho d
=> d = 1
Vậy 5n + 3 và 3n + 2 nguyên tố cùng nhau .
Gọi ƯCLN của 5n +3 và 3n +2 là d
Ta có:
\(5n+3⋮d\)\(\Rightarrow15n+9⋮d\)
\(3n+2⋮d\)\(\Rightarrow15n+10⋮d\)
Vây 1 \(⋮d=>d=1\)
Vậy các số trên nguyên tố cùng nhau.
\(b,4n+3;6n+4\)
Gọi ƯCLN của 4n+3 và 6n+4 là d
Ta cs:
\(4n+3⋮d\Rightarrow12n+9⋮d\)
\(6n+4⋮d\Rightarrow12n+8⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy các số trên nguyên tố cùng nhau.
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
bài 5:Gọi a là số nguyên đầu tiên trong dãy 3 số nguyên liên tiếp. Ta có dãy số nguyên liên tiếp là a, a+1, a+2. Tổng lập phương của 3 số nguyên liên tiếp là: a^3 + (a+1)^3 + (a+2)^3 = a^3 + (a^3 + 3a^2 + 3a + 1) + (a^3 + 6a^2 + 12a + 8) = 3a^3 + 9a^2 + 15a + 9 = 3(a^3 + 3a^2 + 5a + 3) = 3(a(a^2 + 3a + 3) + 3(a + 1)) Ta thấy a(a^2 + 3a + 3) là một số nguyên, và 3(a + 1) cũng là một số nguyên. Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9.
bài 6:a) Để chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6, ta cần chứng minh rằng n(n + 1)(2n + 1) chia hết cho cả 2 và 3. - Đầu tiên, ta chứng minh rằng n(n + 1) chia hết cho 2. Ta biết rằng một trong hai số liên tiếp n và n + 1 phải là số chẵn. Vì vậy, tích của chúng chia hết cho 2. - Tiếp theo, ta chứng minh rằng n(n + 1)(2n + 1) chia hết cho 3. Ta biết rằng một trong ba số liên tiếp n, n + 1 và 2n + 1 phải chia hết cho 3. Vì vậy, tích của chúng chia hết cho 3. Vậy, n(n + 1)(2n + 1) chia hết cho cả 2 và 3, nên nó chia hết cho 6. b) Để chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 120, ta cần chứng minh rằng n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8. - Đầu tiên, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 2. Ta biết rằng n^5 chia hết cho 2 vì n^5 = n^4 * n chia hết cho 2. Tương tự, n^3 cũng chia hết cho 2 vì n^3 = n^2 * n chia hết cho 2. Và n cũng chia hết cho 2. Vậy, n^5 - 5n^3 + 4n chia hết cho 2. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 3. Ta biết rằng n^5 chia hết cho 3 vì n^5 = n^4 * n chia hết cho 3. Tương tự, n^3 cũng chia hết cho 3 vì n^3 = n^2 * n chia hết cho 3. Và n cũng chia hết cho 3. Vậy, n^5 - 5n^3 + 4n chia hết cho 3. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 4. Ta biết rằng n^5 chia hết cho 4 vì n^5 = n^4 * n chia hết cho 4. Tương tự, n^3 cũng chia hết cho 4 vì n^3 = n^2 * n chia hết cho 4. Và n cũng chia hết cho 4. Vậy, n^5 - 5n^3 + 4n chia hết cho 4. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 5. Ta biết rằng n^5 chia hết cho 5 vì n^5 = n^4 * n chia hết cho 5. Tương tự, n^3 cũng chia hết cho 5 vì n^3 = n^2 * n chia hết cho 5. Và n cũng chia hết cho 5. Vậy, n^5 - 5n^3 + 4n chia hết cho 5. - Cuối cùng, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 8. Ta biết rằng n^5 chia hết cho 8 vì n^5 = n^4 * n chia hết cho 8. Tương tự, n^3 cũng chia hết cho 8 vì n^3 = n^2 * n chia hết cho 8. Và n cũng chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8, nên nó chia hết cho 120.
bài 7:Để chứng minh rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n, ta sẽ sử dụng phương pháp quy nạp. Bước 1: Kiểm tra đẳng thức đúng với n = 1: 1^4 + 6(1)^3 + 11(1)^2 + 6(1) = 1 + 6 + 11 + 6 = 24, là số chia hết cho 24. Bước 2: Giả sử đẳng thức đúng với n = k, tức là k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24. Bước 3: Chứng minh đẳng thức cũng đúng với n = k + 1, tức là (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) chia hết cho 24. Ta có: (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 6(k^3 + 3k^2 + 3k + 1) + 11(k^2 + 2k + 1) + 6(k + 1) = (k^4 + 6k^3 + 11k^2 + 6k) + (4k^3 + 6k^2 + 4k + 1 + 6k^3 + 18k^2 + 18k + 6 + 11k^2 + 22k + 11 + 6k + 6) = (k^4 + 6k^3 + 11k^2 + 6k) + (10k^3 + 35k^2 + 32k + 18) = (k^4 + 6k^3 + 11k^2 + 6k) + 2(5k^3 + 17k^2 + 16k + 9) Vì k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24 theo giả thiết quy nạp, và 5k^3 + 17k^2 + 16k + 9 cũng chia hết cho 24 (có thể chứng minh bằng cách sử dụng phương pháp quy nạp tương tự), nên tổng của hai số này cũng chia hết cho 24. Vậy, theo nguyên lý quy nạp, ta có thể kết luận rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n.
bài 8:a) Ta có: n^2 + 4n + 3 = (n + 1)(n + 3) Vì n là số tự nhiên lẻ nên n + 1 và n + 3 đều là số chẵn. Vậy (n + 1)(n + 3) chia hết cho 2. Ta cũng thấy rằng n + 1 và n + 3 có tích là một số chẵn. Vậy (n + 1)(n + 3) chia hết cho 4. Do đó, (n + 1)(n + 3) chia hết cho 8. b) Ta có: n^3 + 3n^2 - n - 3 = (n - 1)(n^2 + 4n + 3) Vì n là số tự nhiên lẻ nên n - 1 là số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 2. Ta cũng thấy rằng n - 1 và n^2 + 4n + 3 có tích là một số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 4. Do đó, (n - 1)(n^2 + 4n + 3) chia hết cho 8. c) Ta có: n^12 - n^8 - n^4 + 1 = (n^12 - n^8) - (n^4 - 1) = n^8(n^4 - 1) - (n^4 - 1) = (n^8 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)^2 = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n^2 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) Vì n là số tự nhiên lẻ nên n + 1 và n - 1 đều là số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 2. Ta cũng thấy rằng (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) có tích là một số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 4. Do đó, (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 8. Vậy ta đã chứng minh được các phần a), b), c).
bài 9:a) Ta có p > 3 là số nguyên tố, suy ra p là số lẻ. Vì vậy, p^2 là số lẻ. Ta có thể biểu diễn p^2 - 1 dưới dạng (p - 1)(p + 1). Vì p là số lẻ, nên p - 1 và p + 1 đều là số chẵn. Do đó, (p - 1)(p + 1) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p là số nguyên tố, nên p không chia hết cho 3. Do đó, p - 1 và p + 1 đều không chia hết cho 3. Vậy, (p - 1)(p + 1) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - 1 chia hết cho 2 x 3 = 6. Vì p^2 - 1 chia hết cho 6, nên p^2 - 1 chia hết cho 2 x 3 x 4 = 24. b) Ta có p > 3 và q > 3 là hai số nguyên tố, suy ra p và q đều là số lẻ. Ta có thể biểu diễn p^2 - q^2 dưới dạng (p - q)(p + q). Vì p và q là số lẻ, nên p - q và p + q đều là số chẵn. Do đó, (p - q)(p + q) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p và q là số nguyên tố, nên p không chia hết cho 3 và q không chia hết cho 3. Do đó, p - q và p + q đều không chia hết cho 3. Vậy, (p - q)(p + q) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - q^2 chia hết cho 2 x 3 = 6. Vì p^2 - q^2 chia hết cho 6, nên p^2 - q^2 chia hết cho 2 x 3 x 4 = 24.
bài 10:Ta có: 11n = 12n - n Vậy ta cần chứng minh rằng n^3 + 12n - n chia hết cho 6 với mọi số n thuộc Z. Ta thấy n^3 + 12n - n = n(n^2 + 12 - 1) = n(n^2 + 11) Để chứng minh n(n^2 + 11) chia hết cho 6, ta cần chứng minh rằng n(n^2 + 11) chia hết cho cả 2 và 3. - Chứng minh n(n^2 + 11) chia hết cho 2: Nếu n chẵn, thì n chia hết cho 2, n^2 cũng chia hết cho 2, nên n(n^2 + 11) chia hết cho 2. Nếu n lẻ, thì n chia hết cho 2, n^2 chia hết cho 4, nên n(n^2 + 11) chia hết cho 2. - Chứng minh n(n^2 + 11) chia hết cho 3: Nếu n chia hết cho 3, thì n(n^2 + 11) chia hết cho 3. Nếu n không chia hết cho 3, ta có 3 trường hợp: + n = 3k + 1, thì n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1, nên n^2 + 11 = 3(3k^2 + 2k + 3) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k + 2, thì n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1, nên n^2 + 11 = 3(3k^2 + 4k + 4) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k, thì n^2 = 9k^2, nên n^2 + 11 = 9k^2 + 11 = 3(3k^2 + 3) + 2, n(n^2 + 11) chia hết cho 3. Vậy ta đã chứng minh được rằng n(n^2 + 11) chia hết cho cả 2 và 3, nên n(n^2 + 11) chia hết cho 6 với mọi số n thuộc Z.
chứng minh rằng các cặp số nguyên tố cùng nhau
a) n-1 và 3n-4
b)2n+3 và 4n+8
c)21n+4 vaf14n +3
d)12n+1 và 30n+2
e)2n+1 và 6n+5
f)3n+2 và 5n +3
Bài 1:
Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 1; 3n + 1)
⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d
⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
Bài 2:
Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 4n + 12)
⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d
⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d
⇒⇒2 ⋮⋮d
Mà: 2n + 5 là số lẻ nên d = 1
Do đó: ƯCLN(2n + 5; 4n + 12) = 1
Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.
Bài 3:
Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(12n + 1; 30n + 2)
⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d
⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(12n + 1; 30n + 2) = 1
Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.
Bài 4:
Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)
⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d
⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 5; 3n + 7) = 1
Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.
Bài 5:
Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)
⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d
⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(5n + 7; 3n + 4) = 1
Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.
Bài 6:
Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)
⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d
⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(7n + 10; 5n + 7) = 1
Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.
Chứng tỏ rằng với mọi số nguyên n, các phân số sau tối giản:
a) 15n+1/30n+1. ; b) 12n+1/30n+2. ; c)8n+5/6n+4 ; d)2n+3/4n+8
a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:
15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d
30n+1 chia hết cho d
=> 30n+2-(30n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(15n+1; 30n+1) = 1
=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)
Các phần sau tương tự
Cho số nguyên dương n thỏa mãn 6n2 + 5n + 1 là một số chính phương. Chứng minh rằng : n chia hết cho 40
Ta có: \(A=6n^2+5n+1=\left(3n+1\right)\left(2n+1\right)\)là số chính phương.
\(\Rightarrow3n+1,2n+1\)là số chính phương.
\(\Rightarrow3n+1=x^2;2n+1=y^2\)
\(\Rightarrow y\)lẻ.
\(\Rightarrow y=2k+1\Rightarrow2n+1=\left(2k+1\right)^2\Rightarrow n=2k\left(k+1\right)\)
\(\Rightarrow n\)chẵn.
\(\Rightarrow3n+1\) lẻ
\(\Rightarrow x\)lẻ.
\(\Rightarrow n=x^2-y^2⋮8\)
Lại có: \(x^2+y^2=5n+2\) chia \(5\)dư \(2\)
Vì số chính phương chia \(5\)dư \(0,1,4\)
\(\Rightarrow x^2,y^2\)chia \(5\)dư \(1\)
\(\Rightarrow x^2-y^2⋮5\)
\(\Rightarrow n⋮5\)
\(\Rightarrow n⋮5.8=40\left(đpcm\right)\)
Chứng minh rằng số A = 4n4+4n3+6n2+3n+2 (với n thuộc Z ) không thể là số chính phương.
Ta có:
+) \(\left(2n^2+n+2\right)^2=4n^4+4n^3+9n^2+4n+4>4n^4+4n^3+6n^2+3n+2\)
Giải thích: \(3n^2+n+2>0\forall n\inℤ\)
+)\(4n^4+4n^3+6n^2+3n+2>4n^4+4n^3+5n^2+2n+1=\left(2n^2+n+1\right)^2\)
Giải thích: \(n^2+n+1>0\forall n\inℤ\)
Ta thấy \(4n^4+4n^3+6n^2+3n+2\)bị kẹp giữa 2 số chính phương liên tiếp nên không thể là số chính phương
làm sao bạn tìm ra hai bình phương kẹp A ở giữa thế bạn, chỉ mik với?
Bài 1: chứng minh với mọt số tự nhiên n khác 0 ta đều có:
a) 1/2.5+1/5.8+1/8.11+...+1/(3n-1).(3n+2)=n/6n+4
b) 5/3.7+5/7.11+5/11.15+...+5/(4n-1).(4n+3)=5n/12n+9