CMR:
a.Tích 4 stn liên tiếp chia hết cho 384
b.n^3+5n chia hết cho 6
Bài 1: CMR: tổng của 3 STN liên tiếp thì chia hết cho 3, còn tổng của 4 STN liên tiếp thì ko chia hết cho 4 ?
Bài 2: CMR: tích 2 STN liên tiếp thì : hết cho 2 ?
Bài 3: Tìm n \(\in\) N để:
* n + 4 : hết cho n
* 2n + 3 : hết cho n
* 3n + 7 : hết cho n
* 27 - 5n : hết cho n
*3n = 1 : hết cho 11 - 2n ( n < 6 )
1.Cmr với mọi n là stn ta có 3n\(^2\) + 3n \(⋮\) 6
2. Cmr tích 4 stn liên tiếp thì chia hết cho 24
3. Cmr tích của 5 stn liên tiếp thì chia hết cho 120
1) Ta có: 3n2+3n
= 3(n2+n) \(⋮\) 3
Vì n là STN nên:
TH1: n là số tự nhiên lẻ.
\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2
\(\Rightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.
TH2: n là số tự nhiên chẵn.
\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)
3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.
Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)
3)
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
\Rightarrow
a, tich 3 STN liên tiếp chia hết cho 6
b, tích 4 STN liên tiếp chia hết cho 24
Mik làm cho câu b thôi ! Thông cảm nhé !
b) Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau
=> a chia hết cho (b.c)
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
a.CMR tích của 2 stn liên tiếp chia hết cho 2
b.CMR tich cua 3 stn lien tiep chia het cho 6
c.CMR tích của 4 stn liên tiếp chia hết cho 24
d.CMR tích của 5 stn liên tiếp chia hết cho 120
\(Nhanh+Đung.se.co.like.lien\)
ai tích cho tui đi để cho tui tròn 300 điểm coi!
tui sẽ cảm tạ = cách cho lại 3 l i k e !
CMR : tích 3 STN liên tiếp chia hết cho 6
Ta có: abcdeg = abc.1000+deg= (deg.2).1000+deg = deg.2000+deg= deg.2001
Mà 2001 chia hết cho 23.29
=>đpcm
tich ba so tu nhien lien tiep bao gio cung chia het cho 2 va 3
ma 2.3=6
=> tich ba so tu nhien lien tiep chia het cho 6
=> dpcm
abc = 2 deg
=>100a+10b+c=200d+20e+2g
Nhận hai vế cho 1000 ta được:
100000a+10000b+1000c=200000d+20000e+2000g
Công hai vế cho 100d+10e+g ta được:
100000a+10000b+1000c+100d+10e+g=200100d+20010e+2001g
=>abcdeg = 2001.(100d+10e+g)=3.23.29.(100d+10e+g)
Vậy abcdeg chia hết cho 23 và 29
chứng minh tổng 3 STN liên tiếp chia hết cho 3 và 4 STN liên tiếp không chia hết cho 4.
các bạn có thể cho mình biết được không,đang cần gấp lắm.
C/m tích 3 stn liên tiếp chia hết cho 6
C/m tổng 3 stn liên tiếp chia hết cho 3
Đây là bài làm của mình. Sai sót gì mong bạn thông cảm.
a) Gọi 3 số tự nhiên liên tiếp là : a (a-1) (a+1)
Tích 3 STN liên tiếp luôn có một số chẵn và một số chia hết cho 3.
=> a ( a-1) (a +1) \(⋮\)2; 3
=> a (a-1) (a+1 ) \(⋮\)6
Vậy tích 3 STN liên tiếp chia hết cho 6 (lớp 8 có bài này).
b) Gọi tổng 3 sô tự nhiên liên tiếp là b + (b +1) + (b +2)
= b + b + 1 + b +2
= 3b + 3
Vì 3b \(⋮\)3 => 3b + 3 \(⋮\)3
Do đó b + (b+1) + (b+2) chia hết cho 3.
Vậy tổng 3 STN liên tiếp chia hết cho 3.
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
Chứng minh rằng
a.Tích của 2 số tự nhiên liên tiếp chia hết cho 2
b.Tích của 3 số tự nhiên liên tiếp chia hết cho3
A)
Nếu a chia hết cho 2 và b ko chia hết cho 2 thì ab chia hết cho 2
B)
Nếu a chia hết cho 3, b ko chia hết cho 3 và c ko chia hết cho 3 thì abc chia hết cho 3
a) Vì 2 số liên tiếp luôn luôn có 1 số chẵn. Mà số chẵn thì chia hết cho 2. Vậy tích của 2 số tự nhiên liên tiếp chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp là a, a+1 và a+2, ta có:
TH1: a chia hết cho 3
=>a.(a+1).(a+2) chia hết cho 3
TH2: a chia 3 dư 1
=> a+2 chia hết cho 3
=> a.(a+1).(a+2) chia hết cho 3
TH3: a chia 3 dư 2
=> a+1 chia hết cho 3
=> a.(a+1).(a+2) chia hết cho 3(đpcm)
Vậy tích của 3 số tự nhiên liên tiếp chia hết cho 3.