C/m rằng B= \(\frac{1.3.5............\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).......2n}=\frac{1}{2^2}\)
Chứng minh rằng:
a)\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)với n thuộc N*
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
C/M rằng
a) \(\frac{1.3.5.....39}{21.22.23.......40}=\frac{1}{2^{10}}\)
b) \(\frac{1.3.5.....\left(2n-1\right)}{\left(n+1\right).\left(n+2\right)......2n}=\frac{1}{2^2}\)
Chứng minh rằng :
a)\(\frac{1.3.5....9}{21.22.23....40}\)=\(\frac{1}{2^{20}}\)
b)\(\frac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)=\(\frac{1}{2^2}\)
100 + 100 + 100
Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho
Chứng minh rằng:
\(\frac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)
Nhanh + đúng = tick
Chứng minh rằng:
a,\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b,\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)
Biết rằng n thuộc N*
a) Ta có:
\(\frac{1.3.5...39}{21.22.23...40}=\frac{1.3.5.7.11.13.15.17.19}{22.24.26.28.30.32.34.36.38}\)=\(\frac{1.3.5.7.9.11.13.15.17.19}{2.11.2^3.3.2.13.2^2.7.2.15.2^5.2.17.2^2.9.2.19.2^3.5}\)=\(\frac{1}{2.2^3.2.2^2.2.2^5.2.2^2.2.2^3}\)=\(\frac{1}{2^{1+3+1+2+1+5+1+2+1+3}}\)=\(\frac{1}{2^{20}}\)
Vậy \(\frac{1.3.5...39}{21.22.23...40}\)= \(\frac{1}{2^{20}}\)
tick cho mk hết âm đi mk chân thành cẳm ơn
chứng minh rằng
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}\)=\(\frac{1}{2^n}\)
1)CMR:
a) \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b) \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)( n thuộc N* )
Chứng minh rằng:
a) \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}=\frac{1}{2^n}\)
Nhân cả tử và mẫu vs:
a)2.4.6.....40
b)2.4.6.....2n
Tính:
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\)
Ta có:
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}=\frac{\left(1.3.5...2n-1\right).\left(2.4.6...2n\right)}{\left(2.4.6...2n\right)\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\)
\(=\frac{1.2.3.4.5.6...\left(2n-1\right).2n}{1.2.3...n\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n.2^n}\)
\(=\frac{1}{2^n}\)