Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
saadaa
Xem chi tiết
saadaa
Xem chi tiết
sasfet
Xem chi tiết
vietanh2004
Xem chi tiết
Trần Đình Quyết
8 tháng 4 2018 lúc 9:14

cũng bằng 3

NGUYỄN THỊ TUYẾT NHUNG
12 tháng 3 2023 lúc 21:40

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

 

 

Stepht Chim Ry
Xem chi tiết
Hoàng Thị Phương Ly
Xem chi tiết
Nguyễn Phương Mai
18 tháng 3 2020 lúc 21:28

cái này mik chịu, mik mới có lớp 7

Khách vãng lai đã xóa
Trần Phúc Khang
19 tháng 3 2020 lúc 11:23

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)

Khách vãng lai đã xóa
Trần Phúc Khang
19 tháng 3 2020 lúc 11:31

2,     \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)

Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)

=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)

Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)

=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)

Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)

Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)

=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)

Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa