Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Trần Trà My
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Vương Thị Diễm Quỳnh
15 tháng 4 2016 lúc 21:02

tự mak vẽ hình ><

a,  ∆ABC cân tại B do  và BK là đường cao

  BK là đường trung tuyến

 K là trung điểm của  AC    

b, ∆ABH = ∆BAK ( cạnh huyền + góc nhọn )

   => BH = AK ( hai cạnh t. ư ) mà AK = 0,5.AC

   => BH = 0,5.AC

 Ta có : BH = CM (BHM =MCB ) mà CK = BH = AC   CM = CK

=> ∆MKC là tam giác cân ( 1 )

Mặt khác : góc MCB = 900 và góc ACB = 300

 => góc MCK = 600 (2)

Từ (1) và (2) => MKC là tam giác đều

c) Vì ∆ABK vuông tại K mà góc KAB = 300 => AB = 2BK = 2.2 = 4cm

Vì ∆ABK vuông tại K nên theo Pitago ta có:

                      

Mà KC = 0,5.AC => KC = AK = √12

KCM đều => KC = KM = 

Theo phần b) AB = BC = 4

                        AH = BK = 2

                       HM = BC (∆BHM = ∆MCB)

Suy ra AM = AH + HM = 6

Vương Thị Diễm Quỳnh
16 tháng 4 2016 lúc 8:22

a/tam giác ABC cân tại B do CÂB=góc ACB(=góc MAC)...

c/ vì ...ta có

\(AK=\sqrt{AB^2-BK^2}=\sqrt{16-4}=\sqrt{12}\)

:P

TRING NOC LUN
1 tháng 11 2017 lúc 20:04

ok

bam xem them lam j :)))

noob

Lưu Thị Bằng
Xem chi tiết
đại chiến thú cưng
10 tháng 2 2019 lúc 14:41

Cho góc xAy = 60o có tia phân giác Az. Từ điểm b trên Ax kẻ BH vông góc với Ay tại H, kẻ BK vuông góc với Az và Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh:

a) K là trung điểm của AC

b) ΔKMC là tam giác đều.

c) Cho BK = 2cm. Tính các cạnh ΔAKM

đại chiến thú cưng
10 tháng 2 2019 lúc 14:41

Cho góc xAy = 60o có tia phân giác Az. Từ điểm b trên Ax kẻ BH vông góc với Ay tại H, kẻ BK vuông góc với Az và Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh:

a) K là trung điểm của AC

b) ΔKMC là tam giác đều.

c) Cho BK = 2cm. Tính các cạnh ΔAKM

đại chiến thú cưng
10 tháng 2 2019 lúc 14:41

Cho góc xAy = 60o có tia phân giác Az. Từ điểm b trên Ax kẻ BH vông góc với Ay tại H, kẻ BK vuông góc với Az và Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh:

a) K là trung điểm của AC

b) ΔKMC là tam giác đều.

c) Cho BK = 2cm. Tính các cạnh ΔAKM

Bánh Bao Nhân Thịt
Xem chi tiết
nguyễn hải bình
Xem chi tiết
Không quan tâm
5 tháng 2 2016 lúc 20:37

22,5

ủng hộ mk nha các bạn

Đỗ Thị Dung
Xem chi tiết
Vô danh đây vip
Xem chi tiết
Đức Trần Hữu
Xem chi tiết
caikeo
11 tháng 2 2018 lúc 9:14

a) Có: BAC = MAC = xAy/2 = 60o/2 = 30o

BCA = MAC (so le trong)

=> BAC = BCA

T/g AKB vuông tại K có: ABK + BAK = 90o

T/g CKB vuông tại K có: CBK + BCK = 90o

Như vậy, ABK = CBK

Từ đó dễ dàng => t/g AKB = t/g CKB ( cạnh góc vuông và góc nhọn kề)

=> AK = KC (2 cạnh tương ứng) (đpcm)

b) t/g AHB vuông tại H có: ABH + BAH = 90o

=> ABH + 60o = 90o

=> ABH = 30o

= BAK

Dễ dàng c/m t/g BAH = t/g ABK ( cạnh huyền - góc nhọn)

=> BH = AK (2 cạnh tương ứng)

Có: BH _|_ Ay (gt)

CM _|_ Ay (gt)

=> BH // CM

Lại có: BC // HM (gt)

=>BH = CM ( tính chất đoạn chắn)

= AK = KC

=> t/g KMC cân tại C (1)

T/g ACM vuông tại M có: CAM + ACM = 90o

=> 30o + ACM = 90o

=> ACM = 60o (2)

Từ (1) và (2) => t/g KMC đều (đpcm)

Trần Thị Minh Ánh 7A
11 tháng 3 2022 lúc 7:58

a) Có: BAC = MAC = xAy/2 = 60o/2 = 30o

BCA = MAC (so le trong)

=> BAC = BCA

T/g AKB vuông tại K có: ABK + BAK = 90o

T/g CKB vuông tại K có: CBK + BCK = 90o

Như vậy, ABK = CBK

Từ đó dễ dàng => t/g AKB = t/g CKB ( cạnh góc vuông và góc nhọn kề)

=> AK = KC (2 cạnh tương ứng) (đpcm)

b) t/g AHB vuông tại H có: ABH + BAH = 90o

=> ABH + 60o = 90o

=> ABH = 30o

= BAK

Dễ dàng c/m t/g BAH = t/g ABK ( cạnh huyền - góc nhọn)

=> BH = AK (2 cạnh tương ứng)

Có: BH _|_ Ay (gt)

CM _|_ Ay (gt)

=> BH // CM

Lại có: BC // HM (gt)

=>BH = CM ( tính chất đoạn chắn)

= AK = KC

=> t/g KMC cân tại C (1)

T/g ACM vuông tại M có: CAM + ACM = 90o

=> 30o + ACM = 90o

=> ACM = 60o (2)

Từ (1) và (2) => t/g KMC đều (đpcm)