giải phương trình nghiệm nguyên dương : \(xy+yz+zx=xyz+2\)
Tìm nghiệm nguyên ,dương của phương trình: xy+yz+zx=xyz+2
giúp mình zới
Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(\Rightarrow xy+yz+zx\le3xy\)
\(\Rightarrow xyz+2\le3xy\)
\(\Rightarrow xy\left(3-z\right)\ge2>0\)
\(\Rightarrow3-z>0\Rightarrow z< 3\)
\(\Rightarrow z=\left\{1;2\right\}\)
TH1:
\(z=1\Rightarrow xy+x+y=xy+2\)
\(\Leftrightarrow x+y=2\Rightarrow x=y=1\)
\(\Rightarrow\left(x;y;z\right)=\left(1;1;1\right)\)
TH2: \(z=2\Rightarrow xy+2x+2y=2xy+2\)
\(\Rightarrow xy-2x-2y+2=0\)
\(\Rightarrow xy-2x-2y+4=2\)
\(\Rightarrow x\left(y-2\right)-2\left(y-2\right)=2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)=2\) (pt ước số cơ bản)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\) \(\Rightarrow\left(x;y;z\right)=\left(4;3;1\right)\)
Vậy nghiệm của pt đã cho là:
\(\left(x;y;z\right)=\left(1;1;1\right);\left(4;3;1\right)\) và các hoán vị của chúng
Tìm nghiệm nguyên của phương trình xy+yz+zx=xyz+2
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Tìm nghiệm nguyên của phương trình:
\(2x^2+3y^2+4x=19\)
tìm nghiệm nguyên dương của phương trình:
\(xy+yz+xz=xyz+2\)
\(2x^2+3y^2+4x=19\)
<=> \(2\left(x^2+2x+1\right)+3y^2=21\)
<=> \(2\left(x+1\right)^2+3y^2=21\)
<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)
=> \(y^2\le7\)(1)
Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)
=> 21 - 3y^2 là số chẵn => 3y^2 là số lẻ => y^2 là số chính phương lẻ (2)
Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1
=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4
Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)
tìm m để hệ phương trình có nghiệm nguyên dương x+y+z=1; xy+yz+xz=9m; xyz=m
Tìm nghiệm nguyên dương của phương trình \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
Áp dụng bất đẳng thứ Cauchy (AM-GM):
\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)
Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)
Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\) (1)
Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\) (2)
Và: \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\) (3)
Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)
\(PT\Leftrightarrow xy^2+yz^2+xz^2=3xyz\ge3\sqrt[3]{xyz^4}\)
Từ đó suy ra: xyz = 1 từ đó suy ra (x,y,z) = (1,1,1);(1,−1,−1);(−1,−1,1);(−1,1,−1)
tìm nghiệm nguyên dương của phương trình y+z+zx-xyz=2
https://olm.vn/thanhvien/900487
bạn ơi Bui Huyen học ở trương tiểu học Thọ Lộc
Giải hệ phương trình: \(\hept{\begin{cases}2\left(y+z\right)=yz\\xy+yz+zx=108\\xyz=180\end{cases}}\)
\(\hept{\begin{cases}2\left(y+z\right)=yz\left(1\right)\\xy+yz+zx=108\left(2\right)\\xyz=180\left(3\right)\end{cases}}\)
Thay (1) vào (3) được
\(\text{2x(y+z)=180}\)
\(\Leftrightarrow2\left(xy+xz\right)=180\)
\(\Leftrightarrow xy+xz=90\)
Thay vào (2) ==> yz = 18
Thay yz vào (3) => x = 10
Đến đây thì dễ r. Tự giải nốt nha!
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{9}{xyz}=1\)