Cho p,q,r là 3 số nguyên tố lớn hơn 3.C/M :q^2+p^2+r^2 là hợp số.
cho p,q,r là 3 số nguyên tố lớn hơn 3,chứng minh rằng p2+q2+r2 là hợp số
Câu 1
Tìm 3 số nguyên tố liên tiếp p,q,r sao cho p2+q2+r2 cũng là số nguyên tố
Câu 2
Tìm bộ 3 số nguyên tố a,b,c sao cho abc<ab+bc+ca
Câu 3
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thỏa mãn n.2n-1 chia hết cho p
Câu 4
Cho p là số nguyên tố, chứng minh rằng số 2p-1 chỉ có ước nguyên tố có dạng 2pk+1
Câu 5
Giả sử p là số nguyên tố lẻ và m=\(\frac{9^p-1}{8}\) . Chứng minh rằng m là hợp số lẻ không chia hết cho 3 và 3m-1= 1 ( mod m)
giúp giải khẩn cấp mng ơi:
1.cho stn n có 1995 ước số có 1 ước nguyên tố chẵn. chứng minh n là số chính phương, n chia hết 4
2. cho a là 1 hợp số, khi phân tích ra thừa số nguyên tố a chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2. biết a^3 có tất cả 40 ước số. a^2 có bn ước số
3.tìm số tự nhiên n > hoặc = 1 sao cho tổng 1!+2!+3!+...+n! là một số chính phương
4. tìm số tự nhiên n có 2 c.s biết 2n+1 và 3n+1 đều là scp
5. chứng minh:
a)p và q là 2 số nguyên tố lớn hơn 3 thì p^2-q^2chia hết cho 24
b)Nếu a;a+k;a+2k (a và k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết 6
6.a)Một số nguyên tố chia 43 dư r (r là hợp số).TÌm r
b)1 số nguyên tố chia 30 dư r. Tìm r biết r ko là hợp số
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Cho \(p,q,r\) là ba số nguyên tố lớn hơn \(3\). Chứng minh rằng: \(p^2+q^2+r^2\) là hợp số.
Cho p,q,r là ba số nguyên tố lớn hơn 3.Chứng minh rằng :p²+q²+r² là hợp số.
Giúp mk nhé m.n
Ta có p2+q2+r2= p.p+q.q+r.r=(p+q+r)(p+q+r)= (p+q+r)2 Vì(p+q+r)2 chia hết cho p+q+r=>p2+q2+r2 là hợp số
1.Cho p là số nguyên tố lớn hơn 3 và 8k+1 là số nguyên tố.CM 8p-1 là hợp số
2.Cho q là số nguyên tố lớn hơn 3 và q+2 là số nguyên tố .CM q+1 là bội của 6
1.
Vì p là số nguyên tố lớn hơn3
=>p có 2 dạng là 3k+1 và 3k+2
*Xét p=3k+1=>8p+1=8.(3k+1)+1=8.3k+8+1=3.8k+9=3.(8k+3) là hợp số
=>Vô lí
*Xét p=3k+2=>8p+1=8.(3k+2)+1=8.3k+16+1=3.8k+17=3.(8k+5)+2 là số nguyên tố
Khi đó: 8p-1=8.(3k+2)-1=8.3k+16-1=3.8k+15=3.(8k+5) là hợp số
Vậy 8p-1 là hợp số
2.
Vì p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2(1)
Vì p là số nguyên tố lớn hơn 3
=>p có 2 dạng là 3k+1 và 3k+2
*Xét p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số
=>Vô lí
*Xét p=3k+2=>p+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố
Khi đó: p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3
=>p+1 chia hết cho 3(2)
Từ (1) và (2) ta thấy:
p+1 chia hết cho 2 và 3
mà (2,3)=1
=>p+1 chia hết cho 2.3
=>p+1 chia hết cho 6
Vậy p+1 là bội của 6
Cho a,b,c lớn hơn 0 và là 3 số P = b^c+a , Q = a^b+c , R = c^a+b là số nguyên tố
CMR: ít nhất có 2 số bằng nhau trong ba số Q,P,R
ấn vào câu hỏi tương tự ở gân chỗ "trả lời"
Cho p,q,r là 3 số nguyên tố > hoặc = 5. CMR p^2 + q^2 + r^2 là hợp số
Cho p , q , r và s là các số nguyên tố lớn hơn 3
Chứng minh rằng : p2 - q2 + r2 - s2 ⋮ 24
1 số chính phương khi chia cho 3 dư 1 \(\Rightarrow\) p2 - q2 + r2 - s2 ⋮ 3
1 số chính phương khi chia cho 8 dư 0, 1 hoặc 4 mà p, q, r, s là số nguyên tố lớn hơn 3 nên p2 , q2 , r2 ,s2 chia 8 dư 1 (1 số lẻ chia cho 1 số chẵn thì số dư của nó là số lẻ) suy ra p2 - q2 + r2 - s2 ⋮8
Suy ra p2 - q2 + r2 - s2 ⋮24
Trả lời:
HT nhoa^^
@Min Lin Zin :333