Cho (O) 2 dây AB và CD cắt nhau ở I.Chứng minh rằng:IA.IB=IC.ID(Xét 2 trường hợp)
Cho (O;R), hai dây AB và CD cắt nhau tại I. Chứng minh:\(IA\times IB=|OI^2-R^2|\) (Xét 2 trường hợp; I nằm trong (O) và I nằm ngoài (O))
Bài1 :Cho (O) từ một điểm A nằm ngoài đường tròn (O) , vẽ hai tiếp tuyến AB và AC với đường tròn . kẻ dây CD song song AB .nối AD cắt đường tròn (O) tại E
câu a:Chứng tỏ AB2=AE.AD
Câu b:Chứng minh góc AOC =góc ACB và tam giác BDC cân.
Câu c: CE kéo dài cắt AB ở I.Chứng minh IA=IB.
cho đường tròn tâm O đường kính AB. vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F chứng minh:
IA.IB=IC.ID VÀ AE.AF=\(AC^2\)(Biết BEFI đã nội tiếp đường tròn)
Xét ΔIAC vuông tại I và ΔIDB vuông tại I có
góc IAC=góc IDB
=>ΔIAC đồng dạng với ΔIDB
=>IA/ID=IC/IB
=>IA*IB=ID*IC
Xét ΔACF và ΔAEC có
góc ACF=góc AEC
góc CAF chung
=>ΔACF đồng dạng với ΔAEC
=>AC/AE=AF/AC
=>AC^2=AE*AF
Cho (O,R) 2 dây AB, CD cắt nhau tại 1 điểm I
a) CMR: IA.IB=IC.ID
b)CM: IA.IB=\(\left(OI^2-R^2\right)\)
MK ĐANG CẦN GẤP MONG CÁC BẠN ZẢI NHANH ZÚP
Cho hình bình hành ABCD lấy M sao cho B là trung điểm của AM , lấy điểm N sao cho D là trung điểm của AN . Chứng minh a) M và N đối xứng với nhau qua C b) Ba đường thẳng AB,BN,DM đồng quy c) Gọi BN cắt CD ở O,AO cắt CN ở I.Chứng minh NI=2/3NC
Cho đường tròn (O;R), 2 dây cung AB và CD cắt nhau tại điểm M nằm bên trong đường tròn.
a) Cm rằng nếu AB=CD thì MA=MC
b) Trường hợp AB>CD. Hãy so sánh khoảng cách từ M đến trung điểm của các dây AB, CD (vẽ hình luôn nha)
Cho 2 đường tròn (O) và (O') cắt nhau tại A và B(O và O' nằm khác phía vs AB).Qua A kẻ cát tuyến cắt đường tròn (O) ở C.Cắt (O') ở D.Các tiếp tuyến của 2 đường tròn kẻ từ C và D,cắt nhau ở I.Chứng minh rằng khi cát tuyến CAD thay đổi thì:
a)Góc CBD ko đổi
b)Góc CID ko đổi
AB = CD
=> cung AB = cung CD
=> Cung AD = cung BC
=> AD = BC
=> tam giác AED = tam giác CEB => EA = EC và EB = ED
=> E chia AB và CD thành những đoạn thẳng đôi một bằng nhau
AB = CD
=> cung AB = cung CD
=> Cung AD = cung BC
=> AD = BC
=> tam giác AED = tam giác CEB => EA = EC và EB = ED
=> E chia AB và CD thành những đoạn thẳng đôi một bằng nhau
cho 2 dây AB và CD của đường tròn O cắt nhau tại M . chứng minh MA.MB=MC.MD
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn \(\stackrel\frown{BC}\)
\(\widehat{BDC}\) là góc nội tiếp chắn \(\stackrel\frown{BC}\)
Do đó: \(\widehat{BAC}=\widehat{BDC}\)(Hệ quả)
hay \(\widehat{MAC}=\widehat{MDB}\)
Xét ΔMAC và ΔMDB có
\(\widehat{MAC}=\widehat{MDB}\)(cmt)
\(\widehat{AMC}\) chung
Do đó: ΔMAC∼ΔMDB(g-g)
Suy ra: \(\dfrac{MA}{MD}=\dfrac{MC}{MB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot MB=MC\cdot MD\)(đpcm)