Cho tam giác ABC vuông tại A, gọi D là trung điểm của AB. kẻ DE vuông góc với BC (E thuộc BC). Tính AC biết: BE = 7cm, EC = 25cm.
Giusp mình với. Mình sẽ tick cho bạn tl đúng
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB. Kẻ DE vuông góc với BC( E thuộc BC ) .Tính độ dài AC biết BE=7cm, EC=25cm
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB. Kẻ DE vuông góc với BC( E thuộc BC ) .Tính độ dài AC biết BE=7cm, EC=25cm
Giúp mk vs nha các bn. Mk cần gấp!!!
Cho tam giác ABC vuông tại A. D là trung điểm của AB, kẻ DE vuông góc với BC (E thuộc BC) .Tính độ dài AC biết BE = 7cm, AC = 25cm
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB. Kẻ DE vuông góc với BC (E thuộc BC). Tính độ dài AC, biết BE = 7 cm, EC = 25 cm
cho tam giác abc vuông tại a gọi d là trung điểm ab kẻ de vuông góc với bc (e thuộc bc) tính độ dài ac biết be =7 ec = 25 cm
cho tam giác ABC vuông tại A. Gọi D alf truong điểm của AB. Kẻ DE vuông góc với BC (E\(\in\)BC). Tính AC, biết BE=7 cm, EC= 25cm
8
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.
a) Cho AB=5cm, AC=7cm, tính BC?
b) CMR: tam giác ABE= tam giác DBE
c) Gọi F là giao điểm của DE và BA, chứng minh:EF=EC
d) CMR: BE là trung trực của đoạn thẳng AD.
a) Áp dụng pytago .
b) Xét t/g ABE; tg DBE:
AB = DB ( gt)
g ABE = DBE (suy từ gt)
BE chung
=> tg ABE = tg DBE (c.g.c)
c) Vì tg ABE = tg DBE (câu b)
=> AE = DE
Xét tg AEF ⊥⊥ tại A; tg DEC ⊥⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn)
=> EF = EC
d) Do tg AEF = tg DEC (câu c)
=> AE = DE
=> E ∈∈ đg trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đg trung trực của AD (2)
Từ (1) và (2) => BE là đg trung trực của AD.
a) Áp dụng định lí pytago cho \(\Delta ABC\):
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+7^2\)
\(BC^2=25+49\)
\(BC^2=74\)
\(BC=\sqrt{74}\)
\(\Rightarrow BC=\sqrt{74}\)
Chúc bn hk tốt :D
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E
a; Cho AB =5cm, AC=7cm, tính BC ?
b; chứng minh tam giác ABE = tam giác DBE
c; Gọi F là giao điểm của DE và BA, chứng minh EF = EC
d; chứng minh BE là trung trực của đoạn thẳng AD
a) Vì tam giác BAC vuông tại A
=> AB^2 + AC^2 = BC^2 ( đl pytago )
=> BC^2 = 5^2 + 7^2 = 74
=> BC = căn bậc 2 của 74
b)
Xét tam giác ABE; tam giác DBE có :
AB = DB ( gt)
góc ABE = góc DBE ( gt)
BE chung
=> tam giác ABE = tam giác DBE (c.g.c) - đpcm
c)
Vì tam giác ABE = tam giác DBE (câu b)
=> AE = DE
Xét tg AEF ⊥ tại A; tg DEC ⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn) - đpcm
=> EF = EC
d)
Do tam giác AEF = tam giác DEC (câu c)
=> AE = DE
=> E ∈ đường trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD. - đpcm
Cho tam giác ABC cân tại A. gọi D là trung điểm của BC. từ D kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (E thuộc AC). Chứng minh rằng :
a/ ΔABD = ΔACD
b/ AD vuông góc với BC.
c/ tam giác EBD = tam giác FCD
d/ Cho AC = 10cm, BC = 12cm. tính AD.
a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :
\(BD=DC\)
\(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)
AB= AC
=> \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)
b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao
=> \(AD\perp BC\)
*Nếu chx học cách trên thì bạn xem cách dưới đây"
Vì \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)
=> \(AD\perp BC\)
c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :
\(\widehat{EBD}=\widehat{FCD}\)
\(BD=CD\)
=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)
d) Vì D là trung điểm của BC nên \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
Xét \(\Delta ADC\) vuông tại D có :
\(AC^2=AD^2+DC^2\)
\(100=AD^2+36\)
\(AD^2=100-36\)
\(AD^2=64\)
AD=8 cm