Cho p và p^2+1 là SNT .CMR p^4+2018 là hợp số
Ai giuk nhk ạ!
Cho p và p+4 là SNT >3.CMR p+8 là hợp số (SNT= số nguyên tố)
Ví p là SNT > 3
=> p có dạng 3q + 1 hoặc 3p + 2
+ Xét p = 3p + 2
Ta có :
p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )
Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số
=> loại p = 3p + 2
Vậy p = 3q + 1
Ta có :
p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )
Ví 3 ( q + 3 ) chia hết cho 3
Mà p + 8 > 3
=> p + 8 là hợp số
Vậy p + 8 là hợp số
Trong olm có ai ở Sài gòn không? ở quận mấy?
có ai ở long xuyên không?
có ai ở Đà lạt không?
Nếu có hãy nhắn tin vs mình nhé! Mình đã đọc nội qui.vui lòng ko đăng cái thứ nhảm loz ấy lên đây=))
cho p là 1 snt >3 và p+8 là snt
CMR p+16 và p+22 là hợp số
Cho P, P+4 là 2 SNT (P>3). CMR P+8 là hợp số.
Vi P là số nguyên tố lớn hơn 3 nên P không chia hết cho 3 \(\Rightarrow\)P = 3k + 1 hoặc 3k + 2
+)Nếu P = 3k + 2 thì P + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên P + 4 là hợp số (loại)
+)Nếu P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 và lớn hơn 3 nên P + 8 là hợp số (đpcm)
bài 1
cho p và 8p-1 là snt
cmr 8p+1 ;à hợp số
bài 2:
cmr với mói snt >2 đều có dạng 4k+1
ai trả lời nhanh và đúng mình cho 3 cái
cản ơn các bạn
Bài 1:Tìm SNT P sao cho
a,P^2+44 là SNT
b,P+10,-+14 là SNT
Bài 2,CMR:n^2-1 và n^2+1 không thể đồng thời là SNT
(n>2,n không chia hết cho 3)
Bài 3: Cho P là SNT>5 và 2P+1 cũng là SNT
CTR:P(P+5)+31 là Hợp Số
Bài 4: CMR:Nếu P là SNT>3 thì (P-1)(P+1) chia hết cho 24
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
1)CMR 2n+1 và 2n(n+1) là 2 số nguyên tố cùng nhau.
2)Tìm SNT P sao cho P chia cho 42 có số dư r là một hợp số.Tìm số dư r.
3)Tìm SNT P sao cho các số sau cũng là SNT:
a)P+2 và P+10
b)P+10 và P+20
c)P+2;P+6;P+8;P+12;P+14;
Cho p là SNT > 3
a, CMR : p có dạng 6k + 1 hoặc 6k + 5
b, Biết 8p + 1 cũng là SNT. CMR : 4p + 1 là hợp số
Cac Snt >3 deu co dang 6k+1;6k+2;6k+3;6k+4;6k+5
Neu p=6k+2 thi chia het cho 2
Neu p= 6k+3thi chia het cho 3
Neu p =6k+4 thi chia het cho 2
Vay p chi co the =6k+1 hoac 6k+5
cho p là số nguyên tố. cmr p+2 và p+4 cùng là snt
p = 2 thì p + 2 = 4, không là snt
Giúp mik với
Bài 1 Cho p và p+4 là SNT; p>3.CMR p+8 là hợp số
(ai giải đúng mik like )
Vì p là số nguyên tố, p>3 nên p có một trong 2 dạng sau:
p=3k+1( k thuộc N*)
p=3k+2(k thuộc N*)
Nếu p=3k+2 ta có:
3k+2+4=3k+6=3(k+2) chia hết cho 3=> là hợp số(loại) vì p+4 là số nguyên tố
Nếu p=3k+1 ta có:
3k+1+8=3k+9=3(k+3) là hợp số phù hợp với đề bài
Vậy số nguyên tố p có dạng 3k+1 thì p+8 là hợp số.
Tick nha
Vì p là số nguyên tố, p>3 nên số p có 1 trong 2 dạng:
p=3k+1(k thuộc N*)
p=3k+2(k thuộc N*)
Thử vảo là xong
3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu:
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3)
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn
Vậy chỉ có 3 là thỏa mãn yêu cầu