Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Lê Thu Trang
Xem chi tiết
Phạm Ngọc Châu
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 1 2019 lúc 13:09

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) nha bạn!

ko hỉu thì ib

Nguyệt
16 tháng 1 2019 lúc 13:37

\(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\ge9\) với x,y,z dương hay jj đó chứ? (cái này t k bt -.-) VD: x=2, y=-2,z=4

=> \(\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)=\left(2-2+4\right).\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{4}\right)=1\)

-----------------------------------------------------------------------------------------

\(\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\frac{x+y+z}{x+y+z}=0\)

\(\Leftrightarrow\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

vì x+y+z khác 0 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{xy+yz+xz}{xyz}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{\left(xy+yz+xz\right).\left(x+y+z\right)-xyz}{xzy.\left(x+y+z\right)}=0\)

\(\Leftrightarrow\frac{x^2y+xy^2+xyz+zyx+y^2z+yz^2+x^2z+xyz+xz^2-xzy}{xyz.\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\left(yz^2+xzy\right)+\left(x^2z+xz^2\right)=0\)

\(\Leftrightarrow xy.\left(x+z\right)+y^2.\left(x+z\right)+yz.\left(z+x\right)+xz.\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+z\right).\left[x.\left(y+z\right)+y.\left(y+z\right)\right]=0\)

\(\Leftrightarrow\left(x+y\right).\left(y+z\right).\left(x+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-y\\y=-z\end{cases}\text{hoặc }x=-z}\)

\(\Rightarrow P=\left(\frac{1}{x}-\frac{1}{y}\right).\left(\frac{1}{y}+\frac{1}{z}\right).\left(\frac{1}{z}+\frac{1}{x}\right)=0\)

ps: bài này t làm cách l8, ai có cách ez hơn giải vs ak :')  morongtammat

zZz Cool Kid_new zZz
16 tháng 1 2019 lúc 18:05

uk,đúng nhỉ!mik sorry

ô chu choa
Xem chi tiết
Trần Thanh Phương
7 tháng 8 2018 lúc 15:45

Ta có GTTĐ luôn lớn hơn hoặc bằng 0, mà theo đề bài

=> +) x + y - 1 = 0

x + y = 1

=> +) x - y - 2 = 0

x - y = 2

Số x là : ( 2 + 1 ) : 2 = 3/2

Số y là : ( 2 - 1 ) : 2 = 1/2

Vậy,.........

Nguyễn Hà Lan Anh
Xem chi tiết
phan tuấn anh
28 tháng 11 2016 lúc 21:31

để tui lm cho 

áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)

<=> \(3xyz=xy+yz+zx\)

mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx

<=> 1=1+2(xy+yz+zx)

<=> xy+yz+zx=0 

<=> 3xyz=0 

<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

đến đấy cậu tự lm nốt nhé 

Nguyễn Hà Lan Anh
28 tháng 11 2016 lúc 21:39

mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0) 

pn giải cụ thể ra giúp mk vs

phan tuấn anh
28 tháng 11 2016 lúc 22:01

cái ngoặc cuối là hoặc đó .. ko phải và đâu 

đến đó chia 3 th 

th1:x=0 ==> \(\hept{\begin{cases}y+z=1\\y^2+z^2=1\\y^3+z^3=1\end{cases}}\)==> y^2+2yz+z^2=1 <=> 2yz=0 <=> \(\orbr{\begin{cases}y=0\\z=0\end{cases}}\)==> \(\orbr{\begin{cases}z=1\\z=0\end{cases}}\)

do đó ta có cặp nghiệm (x;y;z) =(0;0;1) ;( 0;1;0 )

2th còn lại cậu lm tương tự 

Trần Thị Nhung
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Nicky Grimmie
27 tháng 1 2017 lúc 20:38

n+2 E Ư(6)

mà Ư(6)={-1;1;2;-2;3;-3;6;-6}

=>nE{-3;-1;0;-4;1;-5;4;-8}

vậy........

Alisia
27 tháng 1 2017 lúc 20:08

mình nhanh rồi nè bạn 

Nicky Grimmie
27 tháng 1 2017 lúc 20:35

(x-3)(x+y)=7

(x-3)y+x^2-3x=-7

(x-3)y+x^2-3x-(-7)=0

(x-3)y+x^2-3x+7=0

x-3=0

x=3

Lê Duy Thanh
Xem chi tiết
Văn
Xem chi tiết
trần thị mai
Xem chi tiết