Tìm n thuộc Z để biểu thức sau có giá trị nguyên
A= \(\frac{2n+8}{5}+\frac{-n-7}{5}\)
bài 1: tìm x thuộc Z để biểu thức có giá trị nhỏ nhất;
a. A=\(\frac{7-x}{x-5}\)
b.B=\(\frac{5x-19}{x-4}\)
bài 2:tìm n thuộc n để \(\frac{7n-8}{2n-3}\)có giá trị nhỏ nhất.
Tìm n thuộc Z để các phân thức sau có giá trị nguyên:
1) \(\frac{n-5}{2n+1}\)
2) \(\frac{n^2+4}{n-1}\)
1) Để phân thức đạt trị nguyên
=> n - 5 chia hết cho 2n + 1
<=> 2n - 10 chia hết cho 2n + 1
<=> 2n + 1 - 11 chia hết cho 2n + 1
<=> 11 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư(11) = {1 ; -1 ; 11 ; -11}
Ta có bảng sau :
2n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -1 | 5 | -6 |
2) Như câu 1 , ta có :
n2 + 4 chia hết cho n - 1
n2 - n + n + 4 chia hết cho n - 1
<=> n(n - 1) + n + 4 chia hết cho n - 1
<=> n - 1 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Còn lại giống 1 , lập bảng xét giá trị n nha !
Tìm số nguyên n để biểu thức A nhận giá trị nguyên
A= 2n+7/n-2
A= 3n+2/n-1
Tìm các giá trị nguyên n để cacs biểu thức sau có giá trị nguyên:
A= \(\frac{5n-7}{n-3}\)
B= \(\frac{12n-5}{2n-1}\)
Ta có: A = \(\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)
Để A \(\in\)Z <=> 8 \(⋮\)n - 3 <=> n - 3 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 11 | -5 |
Vậy ...
B = \(\frac{12n-5}{2n-1}=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)
Để B \(\in\)Z <=> 1 \(⋮\)2n - 1 <=> 2n - 1 \(\in\)Ư(1) = {1; -1}
+) 2n - 1 = 1 => 2n = 1 + 1 = 2 => n = 2 : 2 = 1
2n - 1 = -1 => 2n = -1 + 1 = 0 => n = 0 : 2 = 0
Vậy ...
\(A=\frac{5n-7}{n-3}\)Điều kiện : \(n\ne3\)
\(A=\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)
Để \(A\in Z\Rightarrow\frac{8}{n-3}\in Z\Rightarrow n-3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)
Vậy \(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)thì \(A\in Z\)
\(B=\frac{12n-5}{2n-1}\) Điều kiện : \(n\ne\frac{1}{2}\)
\(=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)
Để \(B\in Z\Rightarrow\frac{1}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Vậy \(\Rightarrow n\in\left\{0;1\right\}\)thì \(B\in Z\)
a) Ta có : Để \(A\inℤ\)
\(\Rightarrow5n-7⋮n-3\)
\(\Rightarrow5n-15+8⋮n-3\)
\(\Rightarrow5\left(n-3\right)+8⋮n-3\)
Vì \(5\left(n-3\right)⋮n-3\)
\(\Rightarrow8⋮n-3\)
\(\Rightarrow n-3\inƯ\left(8\right)\)
\(\Rightarrow n-3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Lập bảng xét các trường hợp :
n - 3 | 1 | - 1 | 2 | - 2 | 4 | - 4 | 8 | -8 |
n | 4 | 2 | 5 | 1 | 7 | - 1 | 11 | - 5 |
Vậy các n thỏa mãn là : 4 ; 2 ; 5 ; 1 ;7 ; - 1 ; 11 ; - 5
b) Để \(B\inℤ\)
\(\Rightarrow12n-5⋮2n-1\)
\(\Rightarrow12n-6+1⋮2n-1\)
\(\Rightarrow6.\left(2n-1\right)+1⋮2n-1\)
Vì \(6.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow1⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(1\right)\)
\(\Rightarrow2n-1\in\left\{1;-1\right\}\)
Lập bảng xét các trường hợp :
\(2n-1\) | \(1\) | \(-1\) |
\(n\) | \(1\) | \(0\) |
Vậy các n thỏa mãn là 1 ; 0
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất.
a)B=\(\frac{7-x}{x-5}\)
b) C=\(\frac{5x-19}{x-4}\)
2. Tìm số tự nhiên n để p/s\(\frac{7n-8}{2n-3}\)có giá trị lớn nhất
tìm số nguyên n để các phân số sau có giá trị nguyên
A=n-5/n-3 B=2n+1/n+1
C=4n+1/3n-5 D=7n-6/3-2n
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
b) ĐKXĐ: \(n\ne-1\)
Để phân số \(B=\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(\Leftrightarrow2n+2-1⋮n+1\)
mà \(2n+2⋮n+1\)
nên \(-1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa)
Vậy: \(n\in\left\{0;-2\right\}\)
c) ĐKXĐ: \(n\ne\dfrac{5}{3}\)
Để phân số \(C=\dfrac{4n+1}{3n-5}\) là số nguyên thì \(4n+1⋮3n-5\)
\(\Leftrightarrow12n+3⋮3n-5\)
\(\Leftrightarrow12n-20+23⋮3n-5\)
mà \(12n-20⋮3n-5\)
nên \(23⋮3n-5\)
\(\Leftrightarrow3n-5\inƯ\left(23\right)\)
\(\Leftrightarrow3n-5\in\left\{1;-1;23;-23\right\}\)
\(\Leftrightarrow3n\in\left\{6;4;28;-18\right\}\)
\(\Leftrightarrow n\in\left\{2;\dfrac{4}{3};\dfrac{28}{3};-6\right\}\)
mà n nguyên
nên \(n\in\left\{2;-6\right\}\)
Vậy: \(n\in\left\{2;-6\right\}\)
cho biểu thức P=2n+1/n+5 (N thuộc Z). Tìm n để P có giá trị là một số nguyên
Tìm n thuộc Z để phân thức sau có giá trị nguyên:
\(\frac{2n}{n-1}\)
Ta có ; \(\frac{2n}{n-1}=\frac{2n-2+2}{n-1}=\frac{2\left(n-1\right)+2}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{2}{n-1}=2+\frac{2}{n-1}\)
Để \(\frac{2n}{n-1}\)nguyên thì 2 chia hết cho n -1
=> n - 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
n - 1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Cho phân số A=\(\frac{5n+2}{2n+7}\)[n thuộc Z]
a,Tìm n thuộc Z để A có giá trị bằng \(\frac{7}{9}\)
b,Tìm n thuộc Z để A thuộc Z