Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN ANH PHƯƠNG
Xem chi tiết
Đỗ Hồng Ngọc
Xem chi tiết
Thanh Tùng DZ
25 tháng 5 2019 lúc 15:17

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)

Nguyễn Duy Khang
Xem chi tiết
Đinh Đức Hùng
21 tháng 7 2017 lúc 11:03

Ta có :

\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2

\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2

Nguyễn Thị Yến Vy
21 tháng 7 2017 lúc 11:02

đặt \(A=\frac{4x+3}{x^2+1}=a\)

<=>ax2+a=4x+3

<=>ax2-4x+a-3=0

\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)

\(\Leftrightarrow4a^2-12a-16\le0\)

\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)

\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)

Vậy Min A=-1;Max A=4

Vũ Xuân Phương
27 tháng 3 2018 lúc 16:04

có thể giải bài này theo\(\Delta\)

Trần Trung Hiếu
Xem chi tiết
Tạ Duy Phương
6 tháng 12 2015 lúc 16:36

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

Hàanh Nguyễn
Xem chi tiết
Laku
10 tháng 7 2021 lúc 9:35

undefined

ĐẶNG QUỐC SƠN
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 16:49

Đặt \(t=x^2,t\ge0\)\(\Rightarrow M=\frac{4t}{t^2+1}\)

Với t = 0 => M = 0Với \(t\ne0\), ta có M đạt giá trị lớn nhất <=> \(\frac{1}{M}\)đạt giá trị nhỏ nhất

Xét : \(\frac{1}{M}=\frac{t^2+1}{4t}=\frac{t}{4}+\frac{1}{4t}=\frac{1}{4}\left(t+\frac{1}{t}\right)\ge\frac{1}{4}.2=\frac{1}{2}\)

Do đó, \(M\ge2\). Dấu "=" xảy ra \(\Leftrightarrow t=\frac{1}{t}\Leftrightarrow t=1\)( t > 0 ) \(\Rightarrow x=\pm1\)

Vậy M đạt giá trị nhỏ nhất bằng 2 , khi \(x=\pm1\)

Nguyễn Trọng Phát
Xem chi tiết
tnhy
Xem chi tiết
Đỗ Công Đoàn
26 tháng 10 2015 lúc 8:42

Mình mới lớp 6

nên ko giải được bài này