chứng tỏ rằng:M=1/3+1/3^2+1/3^3+....+1/3^99 <1/2
chứng tỏ rằng : M=1/3+1/3^2+1/3^3+......+1/3^99 <1/2
1 Cho S = 2 + 2^2 + 2^3 + 2^4 + ............+ 2^10 Chứng tỏ chia hết cho 3
1 Chứng tỏ rằng 1+ 3+ 3^2 +3^3 +............+ 3^99 chia hết cho 40
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
BÀI 1:
S = 2 + 22 + 23 + 24 + ..... + 210
= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)
= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)
= 3(2 + 23 + .... + 27 + 29) \(⋮3\)
BÀI 2:
1 + 3 + 32 + 33 + ....... + 399
= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)
= 40(1 + 34 + ..... + 396) \(⋮40\)
Chứng tỏ rằng M<1/2 biết M = 1/3+1/3^2+1/3^3+...+1/3^99
\(\frac{M}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\)
\(\frac{2M}{3}=M-\frac{M}{3}=\frac{1}{3}-\frac{1}{3^{100}}\)
\(2M=1-\frac{1}{3^{99}}\Rightarrow M=\frac{1}{2}-\frac{1}{2.3^{99}}
M=(\(\frac{1}{1}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+..........+\(\frac{1}{2018}\)) x 2 x 3 x4 x......x2018
Chứng tỏ rằng:M \(⋮\)2019
\(M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...2018\)
\(\Rightarrow M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...673.674...2018\)
Vì \(\hept{\begin{cases}M⋮3\\M⋮673\end{cases}}\) mà \(\left(3,673\right)=1\) nên \(M⋮2019\left(đpcm\right)\)
\(M=\left[\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1008}+\frac{1}{1011}\right)+\left(\frac{1}{1009}+\frac{1}{1010}\right)\right].\)\(2.3...1008.1009.1010.1011...2017.2018\)
\(=\left(\frac{2019}{2018}+\frac{2019}{2.2017}+...+\frac{2019}{1008.1011}+\frac{2019}{1009.1010}\right).2.3...1008.1009.1010.1011...2017.2018\)
\(=2019\left(\frac{1}{2018}+\frac{1}{2.2017}+...+\frac{1}{1008.1011}+\frac{1}{1009.1010}\right).2...1008.1009.1010.1011...2017.2018\)
\(=2019.\left(2...2017+3...2016.2018+...+2.3...1007.1009.1011...2018+2.3....1008.1011...2018\right)\)
Chia hết cho 2019
❖︵Ňɠυүễη Çɦâυ Ƭυấη Ƙїệт♔:Nể phục nể phục!Đã biết \(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2018}\) là số nguyên chưa ạ
Chưng tỏ
a, S= 1/2^2+1/3^2+...+1/9^2
Chứng tỏ 2/5<S<8/9
b, 1/2-1/4+1/8-1/16+1/32-1/64<1/3
c, 1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
Cho M=1/10+1/10^2+1/10^3+...+1/10^2009.Chứng minh rằng:M<1/9
\(10M=1+\frac{1}{10}+\frac{1}{10^2}+...+\frac{1}{10^{2008}}\)
\(9M=10M-M=1-\frac{1}{10^{2009}}\Rightarrow M=\frac{1}{9}-\frac{1}{9.10^{2009}}< \frac{1}{9}\)
Cho biểu thức A=1/3+1/3^2+1/3^3+1/3^4+...1/3^98+1/3^99. Chứng tỏ A<1/2
Ta có:3.A=1+1/3+1/3^2+...+1/3^97 +1/3^98
=>3.A - A=(1+1/3+1/3^2+...+1/3^98 + 1/3^99)-(1/3+1/3^2 +1/3^3+...+1/3^98+1/3^99)
=>2.A=1-1/3^99
=>A=1/2 -1/3^99.1/2 <1/2
Vậy ... T I C K cho mình với nha
Chứng tỏ 1/3-2/3^2+…+99/3^99-100/3^100<3/16
chứng tỏ rằng:1/2^2+1/3^2+1/4^2+...+1/99^2+1/100^2<3/4