cho M=1+7+7^1+7^2+7^3+.....+7^101 chứng minh M chia hết cho 8
a) chứng minh rằng A = 1+4+4^2+4^3+......4^2012 chia hết cho 21
b)chứng minh rằng A=1+7+7^2+7^3+............+7^101 chia hết cho 8
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
chứng minh B = 1 + 7 + 7^2 + 7^3 + ... + 7101 chia hết cho 8
chứng minh rằng : 1+7+7^2+...+7^101 chia hết cho 8
1 + 7 + 72 + ... + 7101
= (1 + 7) + 72.(1 + 7) + ... + 7100.(1 + 7)
= 8 + 72.8 + ... + 7100.8
= 8.(1 + 72 + ... + 7100) chia hết cho 8
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
CHỨNG MINH
a, (5^2003+ 5^2002+5^2001) chia hết cho 31
b.(1+7+7^2+7^3+....+7^100+7^101)chia hết cho 8
c.(4^39+4^40+4^41)chia hết cho 28
a, Cho A = 1+2+22+23+.....+22011
Chứng minh A chia hết cho 3, chia hết cho 5
b, Cho B = 1+7+72+73+......+7101
Chứng tỏ B chia hết cho 8, chia hết cho 50
Chứng minh rằng
B = 1+ 7 + 72 + 73 + 74 + ... + 7101
B chia hết cho 8
\(B=1+7+7^2+7^3+7^4+...+7^{101}\)
\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)
\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)
\(B=8\left(1+7^2+7^4+...+7^{100}\right)\)
\(\text{Vì 8⋮8}\Rightarrow8\left(1+7^2+7^4+...+7^{100}\right)⋮8\)
\(\text{Hay B⋮8}\)
\(\text{Vậy B⋮8}\)
\(B=1+7+7^2+7^3+7^4+...+7^{101}\)
\(B=\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+...+\left(7^{100}+7^{101}\right)\)
\(B=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(B=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\)
B = (1+7) + (72+73) + (74+75)+...+(7100+7101)
B = 1 x (1+7)+ 72x (1+7) + 74x(1+7) +...+ 7100x (1+7)
B = (1+72+74+...+7100) x (1+7)
B = ( 1+72+74+...+7100) x 8
Vì 8 chia hết cho 8 nên (1+72 +74+...+7100) x 8 chia hết cho 8
Vậy B chia hết cho 8
Study well !
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
a, cho M = 7 + 72+ 73+...........+760. Chứng minh rằng M chia hết cho 8
b, Cho P =a +a2 +a3 +............+a2n. Chứng minh rằng P chia hết cho a+1
a
M=(7+7^2)+(7^3+7^4)+...+(7^59+7^60)
=7.(7+1)+7^3.(7+1)+...+7^59+(7+1)
=7.8+7^3.8+...+7^59+8
=>M chia hết cho8