Giải pt : ( x-1/99 +x-99 )+( x-3/97 + x-97/3 )+ (x-5/95 + x-95/5 )=6
giải pt
\(\left(\dfrac{x-1}{99}+x-99\right)+\left(\dfrac{x-3}{97}+\dfrac{x-7}{93}\right)+\left(\dfrac{x-5}{95}+\dfrac{x-95}{5}\right)=6\)
\(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-99}{1}-1\right)+\left(\dfrac{x-3}{97}-1\right)+\left(\dfrac{x-7}{93}-1\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-95}{5}-1\right)=0\)=>x-100=0
hay x=100
(x-1/99+x-99)+(x-3/97+x-7/93)+(x-5/95+x-95/5)=6
a,(x-1/99+x-99)+(x-3/97+x-7/93)+(x-5/95+x-95/5)=6
giải PT: a, (4x-5)2 (2x-3)(x-1)=9
b,\(\frac{5}{x-8}+1=\frac{23}{x^2-5x-24}+\frac{2}{x+3}\)
c,(\(\left(\frac{x-1}{99}+\frac{x-99}{1}\right)+\left(\frac{x-3}{97}+\frac{x+97}{3}\right)+\left(\frac{x-5}{93}+\frac{x-95}{5}\right)=6\)
c, Trừ hai vế cho 6
Vế trái thì lấy từng số hạng trừ 1 là được
giải pt
\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
Sửa đề: \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
Ta có: \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
mà \(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}>0\)
nên 300-x=0
hay x=300
Vậy:S={300}
Giải pt sau:
1,x+2/2002 +x+5/1999 +x+201/1803=-3
2,x+1/99 +x+3/97 +x+5/95=x+9/91 +x+8/92 +x+7/93.
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Rightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=0\)
\(\Rightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Dễ thấy \(\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)>0\)nên x + 2004 = 0
Vậy x = -2004
Tính :
B = 1 x 3 x 5 - 3 x 5 x 7 + 5 x 7 x 9 - 7 x 9 x 11 + ... + 95 x 97 x 99 - 97 x 99 x 101
Giải pt sau:
1,x+2/2002 +x+5/1999 +x+201/1803=-3
2,x+1/99 +x+3/97 +x+5/95=x+9/91 +x+8/92 +x+7/93.
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=-3+1+1+1\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x+2004=0\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\right)\)
<=> x=-2004
a,\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(< =>\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(< =>\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(< =>\left(x+2004\right).\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Do \(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\)
\(=>x+2004=0\)
\(=>x=-2004\)
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x=-2004\)
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+9}{91}+\frac{x+8}{92}+\frac{x+7}{93}\)
\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+9}{91}+1\right)+\left(\frac{x+8}{92}+1\right)+\left(\frac{x+7}{93}+1\right)\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{91}+\frac{x+100}{92}+\frac{x+100}{93}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}-\frac{1}{91}-\frac{1}{92}-\frac{1}{93}\right)=0\)
Để ý thấy cụm đằng sau < 0 nên x=-100