Tìm 2 số tự nhiên a và b biết: BCNN(a,b)-ƯCLN(a,b)=35
Tìm hai số tự nhiên a và b biết a > b, a + b = 16 và ƯCLN ( a ,b ) = 4 b) Tìm 2 số tự nhiên a và b biết BCNN ( a, b ) = 180, ƯCLN ( a, b ) =12
1.cho 2 số tự nhiên và b, ƯCLN (a,b)=7. Tìm a và b biết
a/a+b =56
b/a.b=490
c/ BCNN (a,b)=735
2.Tìm 2 số tự nhiên avaf b, biết rằng a+b=27, ƯCLN (a,b)=3 và BCNN (a,b)=60
3.Tìm 2n số tự nhiên a và b, biết rằng
a/a.b=2940 và BCNN (a,b)=210
b/a.b=160 và BCLN (a,b)=40
c/ a.b=8748 và ƯCLN (a,b)=27
d/a.b=864 và ƯCLN (a,b)=6
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
Tìm các số tự nhiên a,b biết rằng:
a) ƯCLN(a,b)=7 và a+b=35
b)BCNN(a,b)=60 và a.b=300
tìm 2 số tự nhiên a,b biết:
a)5a=13b và ƯCLN (a,b)=48
b)BCNN (a,b)=360 và ab=6480
c)a+b=40 và BCNN (a,b)=7*ƯCLN (a,b)
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
c.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$. Khi đó:
$BCNN(a,b)=7.ƯCLN(a,b)$
$\Rightarrow dxy=7.d$
$\Rightarrow xy=7$. Mà $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(1,7), (7,1)$
$\Rightarrow x+y=8$.
$a+b=dx+dy=40=d(x+y)=8d\Rightarrow d=5$
Nếu $(x,y)=(1,7)\Rightarrow a=dx=5.1=5; b=dy=5.7=35$
Nếu $(x,y)=(7,1)\Rightarrow a=dx=5.7=35; b=dy=5.1=5$
a) Tìm 2 số tự nhiên a,b (a>b) có tổng 224 biết ƯCLN(a,b) =28.
b) Tìm 2 số tự nhiên a,b biết a+2b=48 và ƯCLN (a,b)+3.BCNN (a,b )=114
.1. Tìm 2 số tự nhiên a và b biết tích 2 số =2940 và BCNN(a,b)=210
2. Tìm 2 số tự nhiên a và b biết tích 2 số =864 và ƯCLN(a,b)=6
3.Tìm 2 số tự nhiên a và b biết tổng 2 số =56 và ƯCLN(a,b)=7
Bài 1:
Ta có ab=ƯCLN (a,b). BCNN (a,b)
=>ƯCLN (a,b)=ab:BCNN (a,b)
=>ƯCLN (a,b)=2940:210=14
Ta có: a=14. a' và b=14.b'
Ta có: a.b=2940
Thay số vào, ta có: a.b=14.a'.14.b'=(14.14).a'.b'=2940
=>a'.b'=2940:(14.14)=15 và ƯCLN (a',b')=1
Ta có:
a' | 1 | 3 | 5 | 15 |
b' | 15 | 5 | 3 | 1 |
=>
a | 14 | 42 | 70 | 210 |
b | 210 | 70 | 42 | 14 |
Vậy các cặp số a,b cần tìm là:14 và 210;42 và 70;70 và 42;210 và 14.
2 bài còn lại làm tương tự !
Tìm các số tự nhiên a và b (a<b), biết:
a) ƯCLN ( a, b ) = 15 và BCNN ( a, b ) = 180
b) ƯCLN ( a, b ) = 11 và BCNN ( a, b ) = 484
Trước tiên, ta cần chứng minh 2 bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\).
Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)
Chứng minh:
Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)
Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.
Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)
\(\Leftrightarrow kl-k-l+1\ge0\)
\(\Leftrightarrow kl+1\ge k+l\)
\(\Leftrightarrow dkl+d\ge dk+dl\)
\(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)
Vậy 2 bổ đề đã được chứng minh.
a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)
Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:
\(a\in\left\{15;30;45\right\}\)
Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)
Nếu \(a=30\) thì \(b=90\) (loại)
Nếu \(a=45\) thì \(b=60\) (thỏa)
Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)
Câu b làm tương tự.
1/ Tìm hai số tự nhiên a,b sao cho tổng của ƯCLN và BCNN là 15.
2/ Tìm hai số tự nhiên a,b sao cho hiệu của BCNN và ƯCLN là 35.
Cứu mình với các bạn ơi! :((
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210