Cho ba số a, b, c thỏa mãn \(a^3+b^3+c^3=-1\) và \(a+b+c=-1\)
Tính \(S=a^{2019}+b^{2019}+c^{2019}\)
cho 3 số a,b,c thỏa mãn a+b+c=1 và 1/a+1/b+1/c=1.Tính S=a^2019+b^2019+c^2019
=> \(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
đoạn tiếp tham khảo tại: Boul đz :D
cho 3 số a, b, c thỏa mãn a+b+c=1 và\(\frac{1}{a}\) 1/a + 1/b + 1/c = 1. tính S=a2019 + b2019 +c2019
giúp mk với đang cần gấp
\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)
\(=> (a+b+c)(1/a +1/b+1/c) = 1\)
\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)
\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)
\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)
\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)
\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)
\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)
\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)
\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)
\(<=> (b+c)[a(a+b) + c(a+b)] =0\)
\(<=> (b+c)(a+b)(a+c) =0 \)
<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)
\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)
Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)
Ba số a b c thỏa mãn a + b + c = 1 và 1/a+1/b+1/c=1 . Tính C= a2019+b2019+c2019
Cho a,b,c là 3 số thỏa mãn \(a+b+c=a^3+b^3+c^3=1\) Tính giá trị biểu thức
\(M=a^{2019}+b^{2019}+c^{2019}\)
Cho ba số a, b, c thỏa mãn a,b,c khác 0, a+b+c khác 0 và 1/a+1/b+1/c=1/a+b+c. tính giá trị của biểu thức:
Q= (a^27 + b^27)(b^41 + c^41)(c^2019 + a^2019)
cho 3 số a,b,c thỏa mãn abc=2019. tính A=2019a/ab+2019a+2019 + b/bc +c+2019 + c/ac+c+2019
Cho a,b,c là các số thực; a,b,c ≠ 0 thỏa mãn:
\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}-\dfrac{a^3+b^3+c^3}{abc}=2\)
Tính giá trị biểu thức :
A = [ (a+b)2019 - c2019 ] [ (b+c)2019 - a2019 ] [ (a+c)2019 - b2019 ]
các số nguyên dương a,b thỏa mãn điều kiệcho n a^3+b^3=c^3 .So sánh a^2019+b^2019 và c^2019
mày mất nết láo toét ăn tông lào vào viện tâm thần mà ở mẹ thằng chó
Cho \(a,b,c\ne0\)và \(a+b+c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).Chứng minh rằng trong 3 số a,b,c có 2 số đối nhau. Từ đó suy ra \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)
Giúp mình với!!!!
EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath
Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b
=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)
và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)
Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)