\(\frac{3}{4}.\frac{4}{6}.\frac{5}{8}...\frac{2010}{4018}=1005.16^{1-x}\)
\(\frac{3}{4}.\frac{4}{6}.\frac{5}{8}....\frac{2010}{4018}=1005.16^{1-x}\)
Tìm x biết
\(\frac{3}{4}.\frac{4}{6}.......\frac{2010}{4018}=1005.16^{1-x}\)
tìm x biết :
3/4.4/6.5/8 .......2010/4018 = 1005.16^1-x
\frac{x-10}{2010}+\frac{x-8}{2012}+\frac{x-6}{2014}+\frac{x-4}{2016}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2016}{4}+\frac{x-2014}{6}+\frac{x-2012}{8}+\frac{x-2010}{10}
Tìm x biết
a)\(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)
b)\(\left(\frac{1}{4}x-1\right)\)+\(\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+5\right)=3,5\)
Anh chỉ giải câu a thôi, câu b anh thấy nó bình thường mà.
Cộng vào mỗi phân số thêm 1 đơn vị được:
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\).
Tới đây tự làm tiếp nhá.
a,A=1-2+3+4-5-6+7+8-9-...+2007+2008-2009-2010
b, \(\frac{1}{5^2}-\frac{1}{5^3}+\frac{1}{5^4}-\frac{1}{5^5}+..-\frac{1}{5^{101}}\).CM<\(\frac{1}{30}\)
Tính:
A=\(\frac{7}{3}\).\(\frac{11}{16}\)+\(\frac{10}{3}\).\(\frac{7}{16}\)-\(\frac{7}{6}\).\(\frac{5}{8}\)
B=1+2-3-4+5+6-7-8+.....+2005+2006-2007-2008+2009+2010
C=(1-\(\frac{1}{4}\))(1-\(\frac{1}{9}\))(1-\(\frac{1}{16}\))......(1-\(\frac{1}{100000}\))
D=\(\frac{17\frac{3}{4}.\frac{17}{5}+3\frac{2}{5}.82\frac{1}{4}}{2.34-3.17}\)
E=\(\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}}\)
F=(2-\(\frac{2}{1.3}\))+(2-\(\frac{2}{3.5}\))+(2-\(\frac{2}{5.7}\))+.....+(2-\(\frac{2}{2009.2011}\))
So sánh:\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}}{\frac{\frac{5}{6}}{\frac{7}{8}}}+\frac{\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{4}{3}}{\frac{2}{1}}}\) và\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{5}{6}}{\frac{7}{8}}+\frac{\frac{4}{3}}{\frac{2}{1}}}\)và \(\frac{\frac{\frac{1}{2}+\frac{8}{7}}{\frac{3}{4}+\frac{6}{5}}}{\frac{\frac{5}{6}+\frac{4}{3}}{\frac{7}{8}+\frac{2}{1}}}\)và\(\frac{\frac{\frac{1+8}{2+7}}{\frac{3+6}{4+5}}}{\frac{5+4}{\frac{6+3}{2+1}}}\)
A)\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}....\frac{30}{62}.\frac{31}{64}=4^x\)
B)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)