12 tìm x e n biết
(4x+1) X (y-3) = 9
(2x+3) x (y+4)= 25
Rút gọn biểu thức:
a, 3(x-y)^2-2(x-y)^2+(x-y)(x+y)
b, (x-2)(x^2+2x+4)-x(x-2)(x+2)+4x
c, 2(2x+5)^2-3(4x+1)(1-4x)
d, 4x^2-12+9/9-4x^2
e, x^4+x^3+x+1/x^4-x^3+2x^2-x+1
d) \(\frac{4x^2-12x+9}{9-4x^2}=-\frac{\left(2x+3\right)^2}{\left(2x-3\right)\left(2x+3\right)}=\frac{2x+3}{2x-3}\)
Bài 1. Phân tích các đa thức sau thành nhân tử a) y - 9 - x + 6x b) 25 - 4x? - 4xy - y c) x - xz + 4y - 2yz + 4xy d) 3x + 6xy - 48z + 3y? e) x - z + 4y - 4t - 4xy + 4zt f) +2x'y+xy-16x Bài 2. Tìm x biết a) 3x(-3)-4x+12 -0 b) -5x=0 c) (a-2 -(x+2 =0 d) -9-4x+3)=0 Bài 3. Tính nhanh giá trị biểu thức a) A= x - 4z? - 2xy + y với x = -16; y = -6; z = 45 b) B = x - y + 2y-1 với x = 75; y = 26. c) C = 2x + xy - x'y - 2y với x= y =
giúp e làm vs ạ em đang cần gấp
bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được
1, tìm x biết:
a, |2,7-x|=|-0,3|
b,12/5 -|x+1,5|=0
c,2.|2x-3|=1/2
d, 7,5-3.|5-2x|=-4,5
e, |3x-4|+|3y+15|=0
ê, |x-y|+ |y+9/25|=0
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. CMR: x/2 = y/3 = z/4
Cho x+16/9 = y-25/16 = z+9/25 và 2x^3-1 = 15. Tìm x, y, z
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
1) Cho 3x-2y/4=2z-4x/3=ay-3z/2.chứng tỏ x/2=y/3=z/4
2) tìm x,y,z biết x+16/9=y-25/16=z+9/25 và (2x^3)-1=15
3) cho a/b=c/d chứng tỏ (a-b/c-d)^2=ab/cd và (a+b/c+d)^3=a^3-b^3/c^3-d^3
4) Cmr:
10^n-18n-1 chia het cho 27
27^8-3^21 chia het cho 26
8^12-2^33-2^30 chia het cho 53
Tìm giá trị nhỏ nhất của
B=2x^2+2xy+y^2-2x+2y+2019
E=6x^2+y^2+4x-3y-12
M=x(x+1)(x^2+x-4)
N=(x^2+5x+5)[(x+2)(x+3)+1]
P=(x-1)(x-3)(x^2-4x+5)
1 Tìm x,biết
a) x-14=3x+18
b) (x+7).(x-9)=0
c) /2x-5/-7=22
d)(/2x/-5)-7=22
e)/x+3/+/x+9/+/x+5/=4x
2)Tìm x;y thuộc z biết
a)(2x-1).(y+4)
b)(2x-1).(y-4)
c)(5x+1).(y-1)=4
d)5xy-5x+y=5
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
x - 14 = 3x + 18
x - 3x = 18 + 14
-2x= 32
x= 32 : (-2)
x=-16
Dạng 5: Phối hợp nhiều phương pháp
Bài 3: Phân tích đa thức sau thành nhân tử
a) 4x - 4y + x^2 - 2xy + y^2;
b) x^4 - 4x^3 - 8x^2 + 8x;
c) x^3 + x^2 - 4x - 4;
d) x^4 - x^2 + 2x - 1;
e) x^4 + x^3 + x^2 + 1;
f) x^3 - 4x^2 + 4x - 1;
Bài 4: Phân tích đa thức sau thành nhân tử
a) x^3 + x^2y - xy^2 - y^3;
b) x^2y^2 + 1 - x^2 - y^2;
c) x^2 - y^2 - 4x + 4y;
d) x^2 - y^2 - 2x - 2y;
e) x^2 - y^2 - 2x - 2y;
f) x^3 - y^3 - 3x + 3y;
Bài 5: Tìm x biết
a) x^3 - x^2 - x + 1 = 0;
b) (2x^3 - 3)^2 - (4x^2 - 9) = 0;
c) x^4 + 2x^3 - 6x - 9 = 0;
d) 2(x+5) - x^2 - 5x = 0;
Bài 4 :
a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)
b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)
d)
\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
e) Trùng câu d
f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)
Bài 5:
a) \(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy........
c) \(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Vậy
d) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ........