CTR với mọi số tự nhiên n thì 2^n-1 và 2^n +1 đồng thời là hai số chính phương
CTR với mọi số tự nhiên n thì 2^n-1 và 2^n +1 đồng thời là hai số nguyên tố
nguyên tố cùng nhau chứ nguyên tố gì
Chứng tỏ rằng Phân số 5n^2 + 1/6 nhận giá trị là số tự nhiên với mọi n thì các phân số n/2 và n/3 là các số tự nhiên
Cho A=1+1/2+1/3+..+1/2^6 - 1 CTR 3< A <6
1) Tích của 4 số tự nhiên liên tiếp có phải là 1 số chính phương không?
2) Tìm số tự nhiên n có 2 chữ số, biết rằng 2 số 2n+1 và 3n+1 đồng thời là 2 số chính phương.
3) Có hay không số tự nhiên n để
\(2002+n^2\)
là số chính phương?
Chứng Minh: Với mọi số tự nhiên n thì an=n(n+1)(n+2)(n+3)+1 là số chính phương
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
chứng minh rằng nếu n là số tự nhiên thì n+1 và 2.n+1 đều là các số chính phương thì n là bội của số 24 . Mọi người giải giúp mình với , mình cảm ơn
Lời giải:
Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.
Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$
$\Rightarrow 2n\vdots 4$
$\Rightarrow n\vdots 2$
$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$
$\Rightarrow n\vdots 8(1)$
Mặt khác:
Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)
Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)
Do đó $n$ chia hết cho $3(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)
Vì 2n+1 là số chính phương lẻ nên
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
Chứng minh với mọi số tự nhiên thì A= n(n+1)(n+2)(n+3)+1 là số chính phương
Chứng minh với mọi số tự nhiên thì A=n(n+1)(n+2)(n+3)+1 là số chính phương
Chứng minh : Với mọi số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.
Ta có:
an = n(n+1)(n+2)(n+3) + 1
= (n2 + 3n)(n2 + 3n + 2) +1
= (n2 + 3n)2+ 2(n2 + 3n) + 1
= (n2 + 3n + 1)2
Với n là số tự nhiên thì (n2 + 3n + 1)2 cũng là số tự nhiên, vì vậy, an là số chính phương.
bài 1 : cho n là số tự nhiên lớn hơn 1 . Chứng minh rằng : n4+4n là hợp số
bài 2 : tìm số tự nhiên n sao cho 3n+55 là số chính phương
bài 3 : cho a+1 và 2a+1 ( n ( N ) đồng thời là hai số chính phương . Chứng minh rằng a chia hết cho 24