tim gtnn cua A=7 / 10x -x^2 + 3
tim GTNN cua bieu thuc A=2x2-10x+11
Ta có :
A = 2x2 - 10x + 11
= 2( x2 - 2.x.\(\frac{5}{2}\) + \(\frac{25}{4}\) ) - \(\frac{3}{2}\)
= 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\)
Ta có :
(x - \(\frac{5}{2}\))2 \(\ge0\)
<=> 2(x - \(\frac{5}{2}\))2 \(\ge0\)
<=> 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\) \(\ge-\frac{3}{2}\)
Vậy Amin = - \(\frac{3}{2}\) [ Khi (x - \(\frac{5}{2}=0=>x=\frac{5}{2}\))
1, tim GTLN cua A=13/(x+5)^2+7
2, tim GTNN cua B=|x+2017|+(y+3)^2+2017
3, cho a-1/2=b+3/4=c-5/6 va 5a-3b-4c=46. Tim a,b,c.
tim GTLN hoac GTNN cua bthuc
a) A=x2-6x+11
B=2x2+10x-1
c) 5x-x2
a, \(A=x^2-6x+11\)
\(=x^2-2.3.x+9+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(MinA=3\Leftrightarrow x=3\)
b, \(B=2x^2+10x-1\)
\(=2\left(x^2+5x\right)-1\)
\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)
c, \(C=5x-x^2\)
\(=-x^2+5x\)
\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)
\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)
Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)
Tim GTNN cua bieu thuc :
a) A = 11 - 10x -x2
b) B = / x - 4 / . ( 2 - / x - 4 / )
P/s : / la tri tuyet doi nha :)
Tìm GTLN nhé !
Ta có : A = 11 - 10x - x2
= -(x2 + 10x - 11)
= -(x2 + 10x + 25 - 14)
A = -(x + 5)2 + 14
Vì \(-\left(x+5\right)^2\le0\forall x\in R\)
Nên : A = -(x + 5)2 + 14 \(\le14\forall x\in R\)
Vậy Amin = 14 khi x = -5 .
tim gtnn cua A=x^2-6x+|y-3|+7
khó quá
mik không làm đc
bạn thừ nhờ soyeon_tiểu bàng giải giúp thử xem, chắc chắn bạn ấy sẽ biết
/y-3/>=0
A = (x-3)2 +/y-3/ +7 -9
GTNN A = -2
đúng 100%
bai 1:tim GTNN cua bieu thuc
A=x2+3x+7
B=(x-2)(x-5)(x2-7x-10)
bai 2:tim GTLN cua bieu thuc
A=11-10x-x2
B=[x-4](2-[x-4])
bai 3:tim x,y sao cho
A=2x2+9y2-6xy-6x-12y+2016 co GTNN
B=-x2+2xy-4y2+2x+10y-8 co GTLN
bai 4 :
a)cho x+y=3;x2+y2=5.tinh x3+y3
b)cho x-y=5;x2+y2=15.tinh x3-y3
1 tim gtln hoac gtnn cua bt
B=x2-4xy+5y2+10x-22y+28
GTNN nak !!!
\(B=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)
\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(B_{min}=2\) tại \(x=-3;y=1\)
tim GTNN cua: 3*x^2+y^2-2*x*y-7
đặt A=3x2+y2-2xy-7=(x2-2xy+y2)+2x2-7=(x-y)2+2x2-7.ta có (x-y)2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x bằng y) và 2x2 cũng lớn hơn hoặc bằng 0(bằng 0 khi x=0) nên (x-y)2+2x2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x=y=0) suy ra (x-y)2+2x2-7 luôn lớn hơn hoặc bằng -7(đẳng thức xảy ra khi x=y=0) nên GTNN của A là -7.
Vậy GTNN của A là -7.
1.Giải`phương trình:\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-2},\)
2.Tim GTLN,GTNN cua \(A=\frac{x+1}{x^2+x+1}\)
3.Tim m de 3 duong thang dong quy :
\(d_1:y=x-4;d_2:y=2x-1;d_3:y=mx+2\)