Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Lê Minh Thiện
Xem chi tiết
Đặng Ngọc Quỳnh
26 tháng 9 2020 lúc 19:12

\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)

\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)

\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)

Dấu '' ='' xảy ra khi và chỉ khi  x=1

=> Min A =2/3 khi x=1

Khách vãng lai đã xóa
Sakura Kinomoto
Xem chi tiết
Phan Thanh Tịnh
21 tháng 9 2016 lúc 23:02

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

Nguyễn Tấn Phát
Xem chi tiết
Girl
14 tháng 3 2019 lúc 17:33

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

Nguyen Thi Yen Anh
Xem chi tiết
Nguyễn Linh Chi
3 tháng 6 2019 lúc 13:46

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

maivananh
Xem chi tiết
Trần Thanh Phương
26 tháng 12 2018 lúc 16:44

\(A=\frac{x^2+2x+3}{x^2+2}\)

\(A=\frac{x^2+2+2x+1}{x^2+2}\)

\(A=\frac{x^2+2}{x^2+2}+\frac{2x+1}{x^2+2}\)

\(A=1+\frac{x^2+2-x^2+2x-1}{x^2+2}\)

\(A=1+\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)

\(A=1+1-\frac{\left(x-1\right)^2}{x^2+2}\)

\(A=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Pham Van Hung
26 tháng 12 2018 lúc 20:21

\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{\left(x^2+4x+4\right)+\left(x^2+2\right)}{2\left(x^2+2\right)}=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}+\frac{1}{2}\ge\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+2=0\Leftrightarrow x=-2\)

Vậy GTNN của A là \(\frac{1}{2}\) khi x = -2

Nguyễn Bá Anh Dũng
Xem chi tiết
Cristiano Ronaldo
Xem chi tiết
Nguyễn Anh Quân
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Cristiano Ronaldo
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

Phương Linh
Xem chi tiết
Tạ Duy Phương
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

satoshi-gekkouga
Xem chi tiết