Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn lê gia linh
Xem chi tiết
Thanh Thảo Lê
22 tháng 11 2017 lúc 22:43

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

Đàm Thị Thu Trang
7 tháng 11 2021 lúc 8:53

khó quá

mình cũng đang hỏi câu đấy đây

 

nguyễn lê gia linh
Xem chi tiết
Phuong ao cuoi
Xem chi tiết
Phan Dang Hai Huy
27 tháng 12 2017 lúc 17:21

khó quá khó tìm,k đi!!!!!

to minh hao
Xem chi tiết
Trịnh Thị Mai Linh
27 tháng 11 2015 lúc 12:34

đặt 3n+2 và 2n+1 = d 

suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d

suy ra : (3n+2)-(2n+1) chia hết cho d

suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d

suy ra : 1 chia hết cho d

suy ra d=1

vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau

tick cho mình nhé đúng rồi đấy

Katherine Lilly Filbert
27 tháng 11 2015 lúc 12:34

Gọi UCLN(2n+5, 3n+7) là d 

Ta có 2n+5 chia hết cho d

=> 3(2n+5) chia hết cho d

=> 6n+15 chia hết cho d   (1) 

Ta có: 3n+7 chia hết cho d

=> 2(3n+7) chia hết cho d 

=> 6n+14 chia hết cho d    (2) 

Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d 

=> 1 chia hết cho d

=> d=1

=> UCLN(2n+5, 3n+7) =1

Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau

Lê Bá Khánh Trình
21 tháng 12 2018 lúc 16:29

dell bik cc

Nguyễn Vũ Thịnh
Xem chi tiết
Phan Bá Cường phiên bản...
25 tháng 10 2015 lúc 20:12

Gọi ƯCLN(7n+10;5n+7)=a

Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a

=> 35n+50 chia hết cho a (1)

            5n+7 chia hết cho a => 7(5n+7) chia hết cho a

=> 35n + 49 chia hết cho a (2)

Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a

=> 1 chia hết cho a

=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau 

tick ủng hộ nha

 

Khánh Linh Võ Nguyễn
Xem chi tiết
ST
21 tháng 11 2016 lúc 15:03

Gọi UCLN(2n+5,n+3) là d

Ta có: 2n+5 chia hết cho d

          n+3 chia hết cho d => 2(n+3) chia hết cho d => 2n+6 chia hết cho d

=> 2n+6 - (2n+5) chia hết cho d

=> 2n + 6 - 2n - 5 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> UCLN(2n+5,n+3) = 1

=> 2n+5 và n+3 là 2 số nguyên tố cùng nhau

ngonhuminh
21 tháng 11 2016 lúc 11:57

goi d uoc chung cua hai so tren

theo tinh chat chia het ta co

[2(n+3)-(2n+5)] chia het cho d

1 chia het cho d

=> d =1

=> dpcm

Tran Ba
21 tháng 11 2016 lúc 12:28

Gọi \(d\inƯC\left(2n+5,n+3\right)\)

Ta có:(2n+5) chia hết cho d

         (n+3) chia hết cho d \(\Rightarrow\)[2(n+3)] chia het cho d \(\Rightarrow\)(2n+6) chia hết cho d

\(\Rightarrow\)2n+6-(2n+5) chia hết cho d

        2n+6-2n-5 chia hết cho d

                     1 chia hết cho d

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1\right\}\)

\(\Rightarrow\)ƯCLN(2n+5,n+3)=1

Vậy 2n+5 va n+3 là hai số nguyên tố cùng nhau

Cao ngọc thiên ngân
Xem chi tiết
gunny
22 tháng 12 2019 lúc 19:56

mk chắc chắn 100% là mk ko bt

Khách vãng lai đã xóa

a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\) 

\(\Rightarrow n+2;n+3NTCN\)

b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)

\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2n+3;3n+5NTCN\)

Khách vãng lai đã xóa
Cao ngọc thiên ngân
22 tháng 12 2019 lúc 20:07

he nhô mọi người.

Giải giúp mình bài này .Hơi nhanh xíu nha mình cần gấp 

a)Tổng ba số nguyên tố bằng 132.Tìm số nguyên tố nhỏ nhất 

b) Tìm số nguyên tố p để p + 10 và p +20 là nguyên tố 

Khách vãng lai đã xóa
Trịnh Như Quỳnh
Xem chi tiết
Potter Harry
19 tháng 12 2015 lúc 19:51

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

Ngô Phúc Dương
19 tháng 12 2015 lúc 19:48

làm ơn làm phước cho mk 3 tick đi mk mà

please

Lê Hải Anh
Xem chi tiết
soyeon_Tiểu bàng giải
14 tháng 11 2016 lúc 17:28
Nếu (1) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (2) và (3) vì m + n = 2n + 5 + n = 3n + 5, không là bội của 3, vô lý (loại)Nếu (2) sai tức là 3 kết luận còn lại đúng ta thấy  mẫu thuẫn giữa (3) và (4) vì: m + 7n = m + n + 6n, là bội của 3, không là số nguyên tố (loại)Nếu (4) sai tức là (3) kết luận còn lại đúng ta cũng thấy mâu thuẫn giữa (2) và (3) như trên (loại)

Do đó, (3) là kết luận sai

Từ (1) và (2) cho thấy 2n + 6 chia hết cho n

Vì 2n chia hết cho n nên 6 chia hết cho n

Mà \(n\in N\Rightarrow n\in\left\{1;2;3;6\right\}\)

Lại có: m + 7n = 2n + 5 + 7n = 9n + 5 (1)

Lần lượt thay các giá trị tìm được của n vào (1) ta thấy n = 2 thỏa mãn

=> m = 2.2 + 5 = 9

Vậy m = 9; n = 2 thỏa mãn đề bài

Trần Văn Thành
14 tháng 11 2016 lúc 17:16

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

Hoàng Lê Bảo Ngọc
14 tháng 11 2016 lúc 17:28

a/ Xét (3) : m+n là bội số của 3 , tức là \(m+n=3k\left(k\in N\right)\) (*)

Kết hợp (2) : \(m=2n+5\) thay vào (*) được : \(\left(2n+5\right)+n=3k\Leftrightarrow3k-3n=5\Leftrightarrow3\left(k-n\right)=5\)

\(\Leftrightarrow k-n=\frac{5}{3}\) (vô lý)

Do vậy (2) và (3) mâu thuẫn.