Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Ngọc Hòa
Xem chi tiết
Lăm A Tám Official
Xem chi tiết
Giáp Ngọc Hà Linh
Xem chi tiết
Nguyen Quang Minh
Xem chi tiết
Huy Nguyễn Hữu
Xem chi tiết
Nữ Thần Bóng Tối
Xem chi tiết
Akai Haruma
29 tháng 12 2017 lúc 10:44

Bài 1:

Gọi số tự nhiên thỏa mãn những tính chất của đề bài là $n$

Vì $n$ chia $17$ dư $4$ , chia $19$ dư $11$ nên:

\(n=17k+4=19t+11(k,t\in\mathbb{N})\)

\(\Rightarrow 19t+7=17k\vdots 17\)

\(\Leftrightarrow 17t+2t+7\vdots 17\)

\(\Leftrightarrow 2t+7\vdots 17\)

Do đó \(2t+7=17m\) với $m$ là một số tự nhiên nào đó.

\(\Leftrightarrow 2t=17m-7\)

Vì $2t$ chẵn nên $17m-7$ cũng chẵn. Do đó $m$ lẻ

\(\Rightarrow m\geq 1\Rightarrow 2t=17m-7\geq 10\)

\(\Leftrightarrow t\geq 5\)

Suy ra \(n=19t+11\geq 19.5+11=106\)

Thử lại thấy đúng

Vậy số $n$ nhỏ nhất thỏa mãn đkđb là $106$

Bài 3:

-Nếu $p$ chẵn thì $p+10$ chẵn. Mà $p+10>2$ nên $p+10$ không thể là số nguyên tố.

-Nếu $p$ lẻ thì $p+3$ chẵn. Mà $p+3>2$ nên $p+3$ không thể là số nguyên tố.

Vậy không tồn tại số nguyên tố $p$ nào thỏa mãn $p+3$ và $p+10$ đồng thời là số nguyên tố.

Akai Haruma
29 tháng 12 2017 lúc 10:52

Bài 2:

Số tự nhiên chia 11 dư 12 nghĩa là chia 11 dư 1 nhé bạn.

Gọi số tự nhiên thỏa mãn đề bài là $n$

Theo bài ra ta có: \(n=7k+5=11t+1\)

\(\Rightarrow 11t-4=7k\vdots 7\)

\(\Leftrightarrow 11t-4-7\vdots 7\)

\(\Leftrightarrow 11(t-1)\vdots 7\Leftrightarrow t-1\vdots 7\) (do 7 và 11 nguyên tố cùng nhau)

Do đó \(t-1=7m\Leftrightarrow t=7m+1\)

\(\Rightarrow n=11t+1=11(7m+1)+1=77m+12\)

Vậy số n chia cho 77 dư 12

Bài 4:

\(S=2^n+3^n+4^n+5^n+6^n\)

Với \(n\in\mathbb{N}^* \Rightarrow \left\{\begin{matrix} 2^n \text{ chẵn}\\ 3^n\text{ lẻ}\\ 4^n \text{chẵn}\\ 5^n \text{lẻ}\\ 6^n\text{chẵn}\end{matrix}\right.\)

\(\Rightarrow S=2^n+3^n+4^n+5^n+6^n\) là một số chẵn

Do đó \(S\vdots 2\)

Ngô Tấn Đạt
29 tháng 12 2017 lúc 16:06

3.

Nếu \(p=2\Rightarrow\left\{{}\begin{matrix}p+3=5\\p+10=12\end{matrix}\right.\left(loai\right)\)

Nếu \(p=3\Rightarrow\left\{{}\begin{matrix}p+3=6\\p+10=13\end{matrix}\right.\left(loai\right)\)

Nếu \(p>3\Rightarrow p⋮̸3\Rightarrow\left[{}\begin{matrix}p=3k+1\\p=3k+2\end{matrix}\right.\)

\(p=3k+1\\ \Rightarrow p+1=3k+2;p+10=3k+11\)

Đề có sao ko!!

Trần My
Xem chi tiết
music_0048_pl
Xem chi tiết
Quỳnh Hương Phù Thủy
24 tháng 9 2015 lúc 13:39

mà giờ là chiều rui còn đâu

Hỏi Làm Gì
Xem chi tiết
DanAlex
17 tháng 5 2017 lúc 14:48

Theo bài ra ta có:

A=4a+3

=17b+9              (a,b,c \(\in N\))

=19c+13

Mặt khác: A+25 = 4a+3+25=4a+28=4(a+7)

=17b+9+25=17b+34=17(b+2)

=19c+13+25=19c+38=19(c+2)

Như vậy A+25 chia hết cho 4;17;19 (vì có chứa thừa số 4;17 và 19). Mà (4;17;19) = 1 \(\Rightarrow\)A+25 chia hết cho 1292

\(\Rightarrow\)A+25=1292k (\(k\in\)N*)

\(\Rightarrow\)A=1292k - 25 = 1292k - 1292 + 1267 = 1292(k-1)+1267

Do1267<1292 nên 1267 là số dư trong phép chia a cho 1292


 

Phan Thảo
17 tháng 5 2017 lúc 14:44

Goi số đã cho là A ta có

A=4a+3

  =  17b+9

  =19c+13

măt khác A+25=4a+3+25=4a+28=4.(a+7)

                      =17b+9+25=17b+34=17(b+2)

                     =19c+13+25=19c+28=19.(c+2)

..................................................................................

         K mk đi mk giải tiếp cho

T gaming Meowpeo
18 tháng 1 2020 lúc 20:49

Gọi số đã cho là A.Ta có:
A = 4a + 3 
 = 17b + 9          (a,b,c thuộc N)
 = 19c + 3 
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
                 =17b+9+25=17b+34=17(b+2)
                =19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.

Khách vãng lai đã xóa