Cho A=1+2+2^2+2^3+...+2^2017. Chứng minh rằng A=2^2018 -1.
cho A =2018/2017^2+1 + 2018/2017^2+2 +...+2018/2017^2+201
chứng minh rằng 1<A<2
làm hộ mình
BT1: Cho A = \(\dfrac{1}{2017}+\dfrac{2}{2017^2}+\dfrac{3}{2017^3}+...+\dfrac{2017}{2017^{2017}}+\dfrac{2018}{2017^{2018}}\)
Chứng minh rằng : A < \(\dfrac{2017}{2016^2}\)
CHo A=1/2^2 +1/3^2+...1/2018^2 . Chứng minh 2017/4038 >A>2017/2018
Chữa đề \(\frac{2017}{4038}< A< \frac{2017}{2018}\)
Ta có: \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2018}=\frac{2017}{2018}\)(1)
Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{2019}=\frac{2017}{4038}\)(2)
Từ (1) và (2) => đpcm
\(A=\frac{1}{2017}+\frac{2}{2017^2}+\frac{3}{2017^3}+...+\frac{2017}{2017^{2017}}+\frac{2018}{2017^{2018}}\). Chứng minh rằng : A < \(\frac{2017}{2016^2}\)
A=\(\frac{\frac{1}{2018}+\frac{2}{2017}+\frac{3}{2016}+....+\frac{2017}{2}+\frac{2018}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2019}}\). Chứng minh rằng A là số nguyên
Mong mọi người giúp
1. Tính giá trị biểu thức
a,A=1*2*3*...*2018*2019 - 1*2*3*...*2017*2018 - *1*2*3*...*2017*20182
b,B=(150-1/9-2/10-3/11-...-150/158):(1/36+1/40+1/44+....+1/632)
2, Chứng minh rằng phân số 4n+1/5n+1 là phân số tối giản với mọi số nguyên n
trình bày
Câu 1
a) A=2018!.(2019 - 1 -2018)
=2018!.0
= 0
vậy A= 0
b)\(B=\left(1-\frac{1}{9}+1-\frac{2}{10}+1+\frac{3}{11}+...+1-\frac{150}{158}\right):\left(\frac{1}{4}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{158}\right)\right)\)
\(=\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)
\(=8.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)
\(=8:\frac{1}{4}\)
=32
Vậy B= 32
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
Cho A=1-2018+2018^2-2018^3+...-2018^2017+2018^2018. Chứng minh 2019.A-1 là 1 lũy thừa của 2018
2018 A = 2018 - 2018^2 + 2018^3 +...- 2018^2018 + 2018^2019
=> A + 2018 A = 1 +2018^2019
=> 2019 A = 1 + 2018^2019
=> 2019 A - 1 = 2018^2019
=> 2019 A -1 là 1 lũy thừa của 2018