Câu 1: Tìm giá trị nhỏ nhất của biểu thức : \(A=\left(3x-\frac{1}{2}\right)^2=5\)
Câu 1:
| x - \(\frac{7}{10}\)| -\(\frac{3}{5}=\frac{1}{5}\)
Câu 2: Tìm giá trị nhỏ nhất của biểu thức : \(A=\left(3x-\frac{1}{2}\right)^{^2}-5\)
\(\left(3x-\frac{1}{2}\right)^2\ge0\Leftrightarrow A\ge-5\)
Dấu = xảy ra khi \(3x-\frac{1}{2}=0\)
\(3x=\frac{1}{2}\Rightarrow x=x=\frac{1}{6}\)
Vậy..
Cho -1 < x < 1. Tìm giá trị nhỏ nhất của biểu thức A = \(\frac{\left(3x-5\right)^2}{1-x^2}\)
\(-1< x< 1\Leftrightarrow-1< 0< x^2< 1\Leftrightarrow1-x>0\) (*)
Ta co \(\left(3x-5\right)^2\ge0\forall x\)
Dau '' = '' xay ra \(3x-5=0\Leftrightarrow3x=5\Leftrightarrow x=\frac{5}{3}\) ma de ra \(-1< x< 1\Leftrightarrow\left(3x-5\right)^2\ge0\) (**)
Tu (*) va (**) \(\Leftrightarrow\frac{\left(3x-5\right)^2}{1-x^2}>0\) (Khong tim duoc MinA)
Khong biet do de bai sai hay toi sai nua @@
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\). Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
a) Tìm giá trị lớn nhất của biểu thức: B= 5-\(\left|\frac{1}{3}x+2\right|\)
b) Tìm giá trị nhỏ nhất của biểu thức:C=\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
Tìm giá trị nhỏ nhất của biểu thức: A = 2006 + |3x + 2y | + \(\left(x-\frac{1}{2}\right)^2\)
Ta có:
\(\left(x-\frac{1}{2}\right)^2\ge0;\left|3x+2y\right|\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|+2006\ge2006\)
Dấu "=" xảy ra tại \(\hept{\begin{cases}x-\frac{1}{2}=0\\3x=-2y\end{cases}}\Rightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
Vậy \(A_{min}=2006\Leftrightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
1.
a,Tìm giá trị nhỏ nhất của biểu thức \(C=\left(x+1\right)^2+\left(y+\frac{1}{3}\right)^2-10\)
b, Tìm giá trị lớn nhất của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
2. Cho biểu thức \(E=\frac{3-x}{x-1}\) . Tìm các giá trị nguyên của x để
a, E có giá trị nguyên
b, E có giá trị nhỏ nhất
trình bày cách làm nữa nha . làm dc 1 câu cũng dc nha
Cho -1 < x < 1. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{\left(3x-5\right)^2}{1-x^2}\).
*Giúp mình nhanh với*
Câu 1: Tính giá trị nhỏ nhất của biểu thức : \(E=\frac{5-3x}{4x-8}\left(x\in Z,x\ne2\right)\)
E=\(\dfrac{5-3x}{4x-8}=\dfrac{-3\left(x-2\right)-1}{4\left(x-2\right)}=\dfrac{-3}{4}-\dfrac{1}{4x-8}\)nhỏ nhất ⇔\(\dfrac{1}{4x-8}\) lớn nhất
⇔4x-8 nhỏ nhất ⇔4x-8=1(vì mẫu lớn hơn 0)
⇔x=\(\dfrac{9}{4}\)
Vậy GTNN của E=-\(\dfrac{7}{4}\)khi x=\(\dfrac{9}{4}\)