Tìm ƯCLN của : a , n và n + 1
b , 2n + 1 và 3n + 1
c , ab + ba va 33 ( với a + b không chia hết cho 3 )
Bài 1 : Tìm ƯCLN của :
a) 2n+1 và 3n+1 ( n thuộc vào số tự nhiên)
b) ab thông số + ba thông số và 33 với a+b không chia hết cho 3
c) 123456789 và 98765432
Bài 2 : Tìm a và b biết
a) 7*a=11*b và ƯCLN (a,b) =45
b) a*b=864 và ƯCLN (a,b) =6
Tìm ƯCLN của 2 số:
a) n và n+1. b)2n+1 và ??? c) ab+ba va 33( a+b không chia hết cho 33)
Bài 1: Tìm số tự nhiên n, sao cho:
a) 2n+5 chia hết cho n+1
b) 4n-7 chia hết cho n-1
c) 10-2n chia hết cho n-2
d) 5n-8 chia hết cho 4-n
e) n^2 +3n+6 chia hết cho n+3
Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100
a) chứng tỏ rằng A chia hết cho 2,3,15
b) A là số Nguyên tố hay Hợp số? Vì sao ?
c) Tìm chữ số tận cùng của A
Bài 3: Tìm ƯCLN
a) 2n+1 và 3n+1
b) 9n+13 và 3n+4
c) 2n+1 và 2n+3
Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+7
Bài 5:Tìm số tự nhiên a,b
a) a x b=12
b) (a-1) (b+2)=7
c) a+b+72 và ƯCLN(a,b)+9
d) a x b= 300 và ƯCLN(a,b)=5
e) ƯCLN(a,b)=12 và BCNN(a,b)= 72
Bài 6 : Chứng tỏ rằng:
a) (10^n + 8 ) chia hết cho 9
b) (10^100+5^3) chia hết cho 3 và 9
c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )
d) (10^9 +10^8 +10^7) chia hết cho 555
Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
Bài 4:
a) Gọi UCLN của 7n+10 và 5n+7 là m
7n+10 chia hết cho m<=>35n+50 chia hết cho m
5n+7 chia hết cho m<=>35n+49 chia hết cho m
=>35n+50-(35n+49) chia hết cho m
1 chia hết cho m
m=1
=> UCLN của 7n+10 và 5n+7 là 1=>7n+10 và 5n+7 là 2 số nguyên tố cùng nha
b)Gọi UCLN cua 2n+3 và 4n+7 là d
2n+3 chia hết cho d <=>4n+6 chia hết cho d
4n+7 chia hết cho d
=>4n+7-(4n+6) chia hết cho d
1 chia hết cho d
d=1
=>UCLN của 4n+7 và 2n+3 là 1=>4n+7 và 2n+3 là 2 số nguyên tố cùng nhau
Bài 1: Tìm số tự nhiên n, sao cho:
a) 2n+5 chia hết cho n+1
b) 4n-7 chia hết cho n-1
c) 10-2n chia hết cho n-2
d) 5n-8 chia hết cho 4-n
e) n^2 +3n+6 chia hết cho n+3
Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100
a) chứng tỏ rằng A chia hết cho 2,3,15
b) A là số Nguyên tố hay Hợp số? Vì sao ?
c) Tìm chữ số tận cùng của A
Bài 3: Tìm ƯCLN
a) 2n+1 và 3n+1
b) 9n+13 và 3n+4
c) 2n+1 và 2n+3
Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+7
Bài 5:Tìm số tự nhiên a,b
a) a x b=12
b) (a-1) (b+2)=7
c) a+b+72 và ƯCLN(a,b)+9
d) a x b= 300 và ƯCLN(a,b)=5
e) ƯCLN(a,b)=12 và BCNN(a,b)= 72
Bài 6 : Chứng tỏ rằng:
a) (10^n + 8 ) chia hết cho 9
b) (10^100+5^3) chia hết cho 3 và 9
c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )
d) (10^9 +10^8 +10^7) chia hết cho 555
Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!
dài thấy mợ luôn để t lm đc bài nào thì t lm
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+2^2+2^3+...+2^100 chia hết cho 2
A=2+2^2+2^3+2^4+...+2^99+2^100
A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số.
c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )
A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0.
A=....0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
Bài 4:
a) Gọi UCLN của 7n+10 và 5n+7 là m
7n+10 chia hết cho m<=>35n+50 chia hết cho m
5n+7 chia hết cho m<=>35n+49 chia hết cho m
=>35n+50-(35n+49) chia hết cho m
1 chia hết cho m
m=1
=> UCLN của 7n+10 và 5n+7 là 1=>7n+10 và 5n+7 là 2 số nguyên tố cùng nha
b)Gọi UCLN cua 2n+3 và 4n+7 là d
2n+3 chia hết cho d <=>4n+6 chia hết cho d
4n+7 chia hết cho d
=>4n+7-(4n+6) chia hết cho d
1 chia hết cho d
d=1
=>UCLN của 4n+7 và 2n+3 là 1=>4n+7 và 2n+3 là 2 số nguyên tố cùng nhau.
bài 5:
a) Ta có bảng:
a 1 2 3 4 6 12
b 12 6 4 3 2 1
Vậy (a,b) thuộc {(1;12)(2;6)(3;4)(4;3)(6;2)(12;1)}
b) Ta có bảng
a-1 1 7
b+2 7 1
a 2 8
b 5 -1
Mà a,b thuộc N Vậy a=2;b=5
c)
a=9a'
b=9b' với UCLN(a',b')=1
a+b=72
9(a'+b')=72
a'+b'=72 : 9=8
mà UCLN(a';b')=1 ta có bảng
a' 1 3 5 7
b' 7 5 3 1
a 9 27 45 63
b 63 45 27 9
vay a;b thuộc{(9;63)(27;45)(45;27)(6
1)Tìm ước chung của 2 số ab+ba và 33,biết a+b không chia hết cho 3
2)Tìm ước chung của 2 số 2n+1 và 3n+1 với n thuộc các số tự nhiên
3)Biết hai số:5n+6 và 8n+7 với n thuộc các số tự nhiên là 2 số ko nguyên tố cùng nhau.Tìm ước chung của 5n+6 và 8n+7
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Bài 1: Tìm x ∈ N biết:
a) 96 chia hết cho x ; 102 chia hết cho x và x > 3
b) 172 chia x dư 1 ; 183 chia x dư 3
Bài 2:
a) Tìm ƯCLN(4n + 7 ; 2n + 3)
b) Chứng tỏ rằng: \(\dfrac{3n+5}{6n+9}\) là phân số tối giản với x ∈ N
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
Với n là số tự nhiên. Tìm ƯCLN của các số sau: a) 3n+1 và 3n+10 b) 2n+1 và n+3
Lời giải:
a. Gọi d là ƯCLN của $3n+1, 3n+10$
\(\Rightarrow \left\{\begin{matrix} 3n+1\vdots d\\ 3n+10\vdots d\end{matrix}\right.\Rightarrow (3n+10)-(3n+1)\vdots d\)
\(\Rightarrow 9\vdots d\)
\(\Rightarrow d=\left\{1;3;9\right\}\)
Mà $3n+1\vdots d$ nên $d$ không thể là $3,9$
$\Rightarrow d=1$
Vậy ƯCLN $(3n+1,3n+10)=1$
b.
Gọi $d$ là ƯCLN $(2n+1,n+3)$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ n+3\vdots d\end{matrix}\right.\left\{\begin{matrix} 2n+1\vdots d\\ 2n+6\vdots d\end{matrix}\right.\)
\(\Rightarrow (2n+6)-(2n+1)\vdots d\Rightarrow 5\vdots d\)
\(\Rightarrow d\in\left\{1;5\right\}\)
Bài 1: Tìm ƯCLN(ab+ba và 55)
Bài 2: CMR các số sau đây NTCN
a, 2n+5 và 3n+7 (n thuộc N)
b, 2n+1 và 6n+5 (n thuộc N)
c, 2n+3 và 4n+8 (n thuộc N)