Tìm giá trị nhỏ nhất :
A=x^3-3x+1/x^2 (x khác 0)
1)Tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức :C=x-4y-x2-y2+1
2)Cho a+4b=3
Tính giá trị nhỏ nhất của P=a2+4b2
3)Cho A=3x6(2x+5)n+3:2x2(2x+5)n-1-39.22:648.Với x khác 0 , x khác \(\frac{-5}{2}\)
n thuộc N*. Rút gọn A,sau đó tìm x để A=0
Cho biểu thức : A= x-1/3x và B= ( x+1/2x-2 + 3x-1/x2 - 1 - x+3/2x+2) : 3/x+1 Với x # 0,x# -1,1.
a)Rút gọn biểu thức B
b)Tính giá trị của biểu thức A khi x thỏa mãn x2 - 2x = 0
c) tìm giá trị của x để B/A đạt giá trị nhỏ nhất .
b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)
Tìm giá trị của x để phân thức \(\frac{3x-2}{x^2-9}\) bằng 0
Tìm giá trị nhỏ nhất của phân thức A=\(\frac{6x^2-4x+4}{x^2}\)(x khác 0)
Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)
\(3x=2\)
\(x=\frac{2}{3}\)
Câu thứ 2 nha:
A = \(\frac{6x^2-4x+4}{x^2}\)= \(\frac{2x^2+4x^2-4x+1}{x^2}\)= \(2+\frac{\left(x-2\right)^2}{x^2}\)
Đặt B = \(\frac{\left(x-2\right)^2}{x^2}\)
Do x khác 0 =>\(\left(x-2\right)^2>=0\)và \(x^2\)\(>0\)
Cho nên giá trị nhỏ nhất của phân thức A đã nêu là giá trị nhỏ nhất của phân thức B.
=> Min B = \(\frac{0}{x^2}\)= 0
=> Min A = 2 + 0 = 2
Dấu "=" xảy ra khi và chỉ khi (x-2)2 = 0
=> x-2 = 0
=> x = 2
Cho M =3x^2y+4x^2y+\(\frac{1}{2}\)+x^2y
1)tìm cặp số nguyên (x;y) để M=240
2)chứng minh M và 2x^2y^3 cung dấu với mọi x;y khác 0
3) C/M M và -2x^4 khác dấu với mọi x khác 0
4) C/M 2x^4y^3 và -4xy ít nhất có một đơn thức có giá trị âm với mọi x,y khác 0
5)C/M M-2x^4y^3 và -4xy ít nhất có 1 đơn thức có giá trị dương với mọi x,y khác 0
6)tìm số h để kx^2y^2 và 2My nhận giá trị
a) âm với mọi x,y khác 0
b) dương vói mọi x,y khác 0
7) tìm giá trị nhỏ nhất của M+2
8) tìm giá trị lớn nhất của -M+2
9)tìm số tự nhiên A biêt \(\frac{15}{6}x^2y+\frac{15}{12}x^2y+\frac{15}{30}x^2y+.......+\frac{15}{a-\left(a+1\right)}\)
Cho 2 biểu thức
A=(√x / √x-1 - 1/x-√x) : √x+1 / √x+2
B=√x /√x-3
x>0 ; x khác 1;x khác 9
a) tính giá trị biểu thức B khi x=36
b) tìm x để B<1/2
c) rút gọn A
d) tin giá trị x nguyên nhỏ nhất để P=A. B nguyên
Bài 1 : Tìm x :
a,/3x-1/-/2x+3/=0
b, /x+1/+/x+2/-x=0
c, /2x-3/+/x+1/=x
d, /x-1/ -/2-x/+x=0
Bài 2 : Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất trong các biểu thức sau:
a, A=/ 2x+1/-7
b, B= -2x./1-x/
c. C=/1-x/ +/x-2/
Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt
a) \(|3x-1|-|2x+3|=0\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)
Lập bảng xét dấu :
+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)-\left(-2x-3\right)=0\)
\(1-3x+2x+3=0\)
\(-x+4=0\)
\(x=4\)( chọn )
+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(1-3x\right)-\left(2x+3\right)=0\)
\(1-3x-2x-3=0\)
\(-5x-2=0\)
\(x=\frac{-2}{5}\)( chọn )
+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)-\left(2x+3\right)=0\)
\(3x-1-2x-3=0\)
\(x-4=0\)
\(x=4\)( chọn )
Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)
Bài 2:
a) Ta có: \(|2x+1|\ge0\forall x\)
\(\Rightarrow|2x+1|-7\ge0-7\forall x\)
Hay \(A\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)
b) ko biết
c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)
Hay \(C\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)
( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )
Cho A = 1/5 nhân 225/8+2 + 3/14 nhân 196/3x+6
(x thuộc z; x khác -2)
a) Rút gọn A
b) Trong các giá trị nguyên A tìm giá trị lớn nhất, các giá trị nhỏ nhất
c) Tìm x thuộc z để A thuộc z
tìm X sao cho
a, (x-2)^2 (x+1) (x-4)<0
b,x^2(x-3):x-9<0
c,5:x<1
2.tìm giá trị nhỏ nhất
a.x^4 + 3x^2+2
b,(x^4+5)^2
3,tìm giá trị lớn nhất
a.5-3(2x-1)^2
b,1:2(x-1)^2 +3
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
Cho 2 biểu thức A = 3x+2/x và B = x^2+1/x^2−x − 2/x−1 với x≠0, 1.
a) Tính giá trị của biểu thức A khi x = 2/3.
b) Chứng minh B = x−1/x .
c) Đặt P = A: B. Tìm x nguyên để P có giá trị nguyên nhỏ nhất.