tìm a,b E N biết a.b=2940 và BCNN (a,b)=210.trình bày nha anh em
Tìm a,b thuộc N biết:
a) a.b=2940 và BCNN(a,b)=210
b)BCNN(a,b)+ƯCLN(a,b)=15
Tìm hai số tự nhiên a và b biết BCNN(a,b)=210 và a.b=2940
Công thức: ƯCLN (a; b) = a.b : BCNN (a; b)
Bg
Ta có: BCNN (a; b) = 210 và a.b = 2940
=> ƯCLN (a; b) = 2940 : 210
=> ƯCLN (a; b) = 14
Đặt a = 14.x và b = 14.y (x, y \(\inℕ^∗\), x và y nguyên tố cùng nhau), ta có:
a.b = 14.x.14.y = 2940
=> 14.14.x.y = 2940
=> 196.x.y = 2940
=> x.y = 2940 : 196
=> x.y = 15 = 3.5 = 5.3 = 1.15 = 15.1
Với x = 3 và y = 5:
=> a = 14.3 = 42 và b = 14.5 = 70 (thoả mãn)
Với x = 5 và y = 3:
=> a = 14.5 = 70 và b = 14.3 = 42 (thoả mãn)
Với x = 1 và y = 15:
=> a = 14.1 = 14 và b = 14.15 = 210 (thoả mãn)
Với x = 15 và y = 1:
=> a = 14.15 = 210 và b = 14.1 = 14 (thoả mãn)
Vậy các cặp {x; y} thoả mãn đề bài là: {42; 70}; {70; 42}; {14; 210}; {210; 14}
tìm 2 số tự nhiên a và b biết
a)BcNN(a,b)=300 và ƯcLN(a,b)=15
b)a.b =2940 và BcNN(a,b)=210
Bài 1
a Tìm 2 số a,b biết
BCNN của a,b=270 và UwCLN của a,b=18
b Tìm 2 STN a,b biết
a.b=2940 và BCNN của a,b=210
Tìm 2 STN a,b biết(a>b)
1)a+b=224 và ƯCLN(a,b)=28
2)BCNN(a,b)=300 và ƯCLN(a,b)=15
3)a.b=2940 và BCNN(a,b)=210
lm nhu the nao?????
nho các bạn giai jum` đi
Tìm a,b biết
a. BCNN( a,b) =300
ƯCLN ( a, b) = 15
b. a.b = 2940
BCNN(a,b)= 210
c. a.b= 6144
BCNN(a,b) = 300
Giúp mình nha, mình đang cần gấp ,ai làm đúng và nhanh mình sẽ chọn
Đề bài : Tìm hai số tự nhiên a , b biết (a>b)
1) a+b=224 và ƯCLN (a,b)= 28
2) BCNN(a,b)=300 và ƯCLN(a,b)=15
3)a.b=2940 và BCNN (a,b)=210
a,tích a.b=6936 và BCNN (a,b)=204
b,BCNN (a,b)=630 ucln(a,b)=18
c,BCNN(a,b)=300 ucln(a,b)=15
d,tích a.b=2940 và BCNN (a,b)=210
a.b=2940 và BCNN (a,b)=210
BCNN(a.b)=300 ƯCLN (a,b)=15
nhanh nhất tym
Ta có \(a.b=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\)
\(\RightarrowƯCLN\left(a,b\right)=2940:210=14\)
\(\Rightarrow a=14m;b=14n\)( với m,n khác 0 )
Thay \(a=14m;b=14n\)vào \(a.b=2940\)ta có
\(14m.14n=2940\)
\(\Rightarrow196.m.n=2940\)
\(\Rightarrow m.n=15\)
\(\Rightarrow m.n=1.15=3.5\)
+ Với m = 1 ; n = 15 \(\Rightarrow a=14;b=210\)
+ với m = 15 ; n =1 \(\Rightarrow a=210;b=14\)
+ Với m = 3 ; n = 5 \(\Rightarrow a=42;b=70\)
+ Với m = 5 ; n = 3 \(\Rightarrow a=70;b=42\)
\(ƯCLN\left(a,b\right)=15\Leftrightarrow a=15m;b=15n;\left(m,n\ne0\right)\)
\(a.b=BCNN\left(a,b\right).ƯCLN\left(a,b\right)=300.15=4500\)
\(\Rightarrow15m.15n=4500\)
\(\Rightarrow225m.n=4500\)
\(\Rightarrow m.n=20\)
\(\Rightarrow m.n=1.20=2.10=4.5\)
+ Với \(m=1;n=20\Rightarrow a=15;b=300\)
+ Với \(m=20;n=1\Rightarrow a=300;b=15\)
+ Với \(m=2;n=10\Rightarrow a=30;b=150\)
+ Với \(m=10;n=2\Rightarrow a=150;b=30\)
+ Với \(m=4;n=5\Rightarrow a=60;b=75\)
+ Với \(m=5;n=4\Rightarrow a=75;b=60\)
a) Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
=> ƯCLN(a,b) . 210 = 2940
=>ƯCLN(a,b) = 2940 : 210
=> ƯCLN(a,b) = 14
mà a . b = 2940 (1)
Lại có : ƯCLN(a,b) = 14
=> \(\hept{\begin{cases}a=14m\\b=14n\end{cases}}\left(m\ne n;m,n\inℕ\right)\)(2)
Thay (2) vào (1) ta có :
\(14m.14n=2940\)
\(\Rightarrow14.14.m.n=2940\)
\(\Rightarrow196.m.n=2940\)
\(\Rightarrow m.n=2940:196=15\)
\(\Rightarrow m.n=1.15=3.5\)
Lạp bảng xét các trường hợp :
\(m\) | \(3\) | \(5\) | \(1\) | \(15\) |
\(n\) | \(5\) | \(3\) | \(15\) | \(1\) |
\(a\) | \(42\) | \(60\) | \(14\) | \(210\) |
\(b\) | \(60\) | \(42\) | \(210\) | \(14\) |
Vậy các cặp (a,b) thỏa mãn là : \(\left(42;60\right);\left(60;42\right);\left(14;210\right);\left(210;42\right)\)