Cho a,b,c,d khác 0 CMR
M= a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b không thuộc tập hợp Z
CMR M không thuộc tập hợp Z với a, b, c, d dương
M= a/ b+c+d + b/a+c+d + c/a+b+d + d/a+c+b
cho a/b = c/d ( a,b,c,d thuộc Z và b,d khác 0 ). Chứng minh rằng a+b/b = c+d/d
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\)
Cho a,b,c,d thuộc Z, a>b>c>d và a,b,c,d khác 0. Chứng minh nếu a/b=c/d thì a+d>b+c
Cho a/b = c/d (a, b, c,d thuộc Z . b, d khác 0)
Chứng minh rằng
a, a/b = a+c/b+d (làm bằng nhiều cách)
b, a+b/b =c+d/d
c, a-b/a+b = c-d/c+d
a, Áp dụng t/c dãy tỉ : a/b = b/c = c/d = (a + b + c)/(b + c + d). suy ra (a/b)^3 = (a+b+c/b+c+d)^3
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (do rút gọn
Cho các tập hợp
A={x thuộc R|-x2-3x+4=0}
B={-3;-2;1;2;4;a}
C={x thuộc Z|-2 bé hơn hoặc bằng x bé hơn hoặc bằng 4}
D={a thuộc N|-3<a<7}
E={a thuộc Z|a là ước của 18}
a) liệt kê các phần tử của A C D E
b) tìm A giao, hợp B; A giao , hợp C; A giao,hợp D; A giao, hợp E; B giao hợp C;B giao, hợp D; B giao, hợp E;C giao, hợp D;C giao, hợp E; D giao , hợp E
Cho a,b,c,d thuộc tập hợp Z thoã mãn a - (- b + c ) = d . Chứng tỏ rằng a - c = -b + d
có a - (-b + c) = d
a + b - c = d
a + b - c - b = d - b
a - c = -b + d (đpcm)
Cho a,b,c,d thuộc tập hợp N*
Chứng tỏ rằng"
M= [a/(a+b+c)] + [b/(a+b+d)] + [c/(b+c+d)] + [d/(a+c+d)] có giá trị không là số nguyên
cho các số hữu tỉ x=a/b , y=c/d , z=a+c/b+d ( a,b,c,d thuộc Z , b,d khác 0 ) CMR nếu x<y thì x<y<z
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}
chứng tỏ: nếu a/b<c/d
với (a,b,c,d thuộc Z, b,d khác 0)
thì a/b<a+c/b+c<c/d
Chắc bạn ghi sai đề. Đề đúng đâu: Chứng tỏ: Nếu \(\frac{a}{b}< \frac{c}{d}\) với \(\left(a,b,c,d\in Z;b,d\ne0\right)\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) .
\(\Rightarrow ad+ab< bc+ab\) .
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Ta có: \(ad< bc\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)