Cho a,b,c,d thuộc tập hợp N*
Chứng tỏ rằng"
M= [a/(a+b+c)] + [b/(a+b+d)] + [c/(b+c+d)] + [d/(a+c+d)] có giá trị không là số nguyên
Cho a,b,c,d thuộc N* và
M=a/a+b+c+b/a+b+d+c/b+c+d+d/a+c+d
Chứng tỏ rằng 1<M<2 từ đó suy ra M không phải là số tự nhiên
Cho a,b,c,d thuộc tập hợp Z thoã mãn a - (- b + c ) = d . Chứng tỏ rằng a - c = -b + d
1. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d; ab + 1 = cd
Chứng tỏ rằng: c = d
2. Có tồn tại cặp số nguyên (a; b) nào thỏa mãn đẳng thức sau:
a) -252a + 72b = 2013
b) 512a - 104 = -2002
3. Cho m và n là các số nguyên dương:
A = \(\frac{2+4+6+...+2m}{m}\)
B = \(\frac{2+4+6+...+2n}{n}\)
Biết A<B, hãy so sánh m và n
4. Cho a, b, c, d thuộc Z thỏa mãn: a - ( b + c ) = d. Chứng tỏ rằng: a - c = b + d
A= a/a+b+c + b/b+c+d + c/a+c+d + d/ a+b+d. Chứng minh không có giá trị là số nguyên
Cho A=a+b/a+b+c + b+c/b+c+d + c+d/c+d+a + d+a/d+a+b ( với a;b;c;d là các số nguyên dương ) . Chứng tỏ biểu thức A không là số nguyên
cho các số nguyên a,b,c,d
ta có a mũ 2 +b mũ 2 =c mũ 2+ d mũ 2
chứng tỏ rằng a+b+c+d là hợp số
Cho a,b,c,d là các số nguyên dương. Chứng tỏ rằng a/a+b+c + b/b+c+a + c/c+d+a + d/d+a+c >1
1. Cho hai số nguyên
A=(x+y)-(z+t)
B=(x-z)+(y-t)
Hãy so sánh A và B
2. Tìm số nguyên x, biết rằng tổng của ba số 3, -2 và x bằng 5
3. Cho a,b,c, thuộc Z. Chứng tỏ a-b-c và b+c-a là hai số đối nhau.
4.Cho a, b, c, d thuộc Z. Đơn giản các biểu thức sau:
a) M= (a - b) + (b - c) - (d - c)- (a - d)
b) N = (a + b) + (c - d) - (c + a) - (b - d).