Tìm n thuộc N để: 4n-5 chia hết cho 2n-1
Tìm n thuộc N để :
a ) 3n + 2 chia hết cho ( n - 1)
b ) 4n - 5 chia hết cho ( 2n - 1)
a) ta có \(\frac{3n-2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để 3n+2 chia hết cho n-1 thì n-1\(\varepsilon\)Ư(5)={1;5}
=> n thuộc { 2;6}
b)\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)
Để 4n-2 chia hết cho 2n-1 thì 2n-1\(\varepsilon\)Ư(3)={1;3}
=> n thuộc { 1;2}
TÌm n thuộc N để:
a) 3n+2 chia hết cho n-1
b) n+8 chia hết cho n+3
c) n^2+2n+7 chia hết cho n+2
d) 4n-5 chia hết cho 2n-1
Bài 1 : Tìm n thuộc N để
a, n + 2 chia hết cho n - 1
b , 2n + 7 chia hết cho n + 1
c, 2n + 1 chia hết cho 6 - n
d , 3n chia hết cho 5 - 2n
e , 4n + 3 chia hết cho 2n + 6
tìm n thuộc N để
n + 3 chia hết cho n + 1
3n +5 chia hết n -1
4n -6 chia hết cho 2n + 2
\(n+3=\left(n+1\right)+2\)
mà \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\)
\(\Rightarrow n+1\in\hept{ }1;2\)
TH1: \(n+1=1\Leftrightarrow n=1-1=0\)
Th2: \(n+1=2\Leftrightarrow n=2-1=1\)
Vậy \(n\in\hept{ }0;1\)
\(3n+5=3\left(n-1\right)+7\)
mà \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\hept{ }1;7\)
TH1: \(n-1=1\Leftrightarrow n=1+1=2\)
TH2: \(n-1=7\Leftrightarrow n=7+1=8\)
Vậy \(n\in\hept{ }2;8\)
\(4n-6=4n-4-2\)
\(\Leftrightarrow4n+4-8-2\)
\(\Leftrightarrow4\left(n+1\right)-8-2\)
\(\Leftrightarrow4\left(n+1\right)-10\)
mà \(2n+2=2\left(n+1\right)\)
mà \(4\left(n+1\right)⋮2\left(n+1\right)\)
\(\Leftrightarrow10⋮2\left(n+1\right)\)
\(\Leftrightarrow2\left(n+1\right)\inƯ\left(10\right)\)
\(\Leftrightarrow2\left(n+1\right)\in\hept{ }1;2;5;10\)
TH1: \(2\left(n+1\right)=1\Leftrightarrow n=-0.5\notin N\)
TH2: \(2\left(n+1\right)=2\Leftrightarrow n=0\in N\)
TH3: \(2\left(n+1\right)=5\Leftrightarrow n=1.5\notin N\)
TH4: \(2\left(n+1\right)=10\Leftrightarrow n=4\in N\)
Vậy \(n\in\hept{ }0;4\)
Nhớ k cho mình nhé! Thank you!!!
n+3=(n+1)+2
mà n+1⋮n+1
⇒2⋮n+1
⇒n+1∈Ư(2)
⇒n+1∈{1;2
TH1: n+1=1⇔n=1−1=0
Th2: n+1=2⇔n=2−1=1
Vậy n∈{0;1
3n+5=3(n−1)+7
mà 3(n−1)⋮n−1
⇒7⋮n−1
⇒n−1∈Ư(7)
⇒n−1∈{1;7
TH1: n−1=1⇔n=1+1=2
TH2: n−1=7⇔n=7+1=8
Vậy n∈{2;8
4n−6=4n−4−2
⇔4n+4−8−2
⇔4(n+1)−8−2
⇔4(n+1)−10
mà 2n+2=2(n+1)
mà 4(n+1)⋮2(n+1)
⇔10⋮2(n+1)
⇔2(n+1)∈Ư(10)
⇔2(n+1)∈{1;2;5;10
TH1: 2(n+1)=1⇔n=−0.5∉N
TH2: 2(n+1)=2⇔n=0∈N
TH3: 2(n+1)=5⇔n=1.5∉N
TH4: 2(n+1)=10⇔n=4∈N
Vậy n∈{0;4
Tìm n thuộc N để:
a) n^2 + 1 chia hết cho n - 1
b) n + 6 chia hết cho n - 1
c) 4n - 5 chia hết cho 2n - 1
Tìm n thuộc n để:
a) 3n +2 chia hết cho n-1
b) n + 8 chia hết cho n + 3
c) n + 6 chia hết cho n - 1
d) 4n - 5 chia hết cho 2n -1
a, \(3n+2⋮n-1\)
\(\Rightarrow3n-3+5⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
Vì : \(3\left(n-1\right)⋮n-1\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;5\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=5\Rightarrow n=5+1\Rightarrow n=6\)
Vậy : \(n\in\left\{2;6\right\}\) thì \(3n+2⋮n-1\)
b, \(n+8⋮n+3\)
Vì : \(n+3⋮n+3\)
\(\Rightarrow\left(n+8\right)-\left(n+3\right)⋮n+3\)
\(\Rightarrow n+8-n-3⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
Mà : \(n+3\ge3\)
\(\Rightarrow n+3=5\Rightarrow n=5-3\Rightarrow n=2\)
Vậy n = 2 thì : \(n+8⋮n+3\)
c, \(n+6⋮n-1\)
Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+6\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+6-n+1⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{1;7\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=7\Rightarrow n=7+1\Rightarrow n=8\)
Vậy \(n\in\left\{2;8\right\}\) thì \(n+6⋮n-1\)
d, \(4n-5⋮2n-1\)
\(\Rightarrow4n-2-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
Vì : \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\)
+) \(2n-1=1\Rightarrow2n=1+1\Rightarrow2n=2\Rightarrow n=2\div2\Rightarrow n=1\)
+) \(2n-1=3\Rightarrow2n=3+1\Rightarrow2n=4\Rightarrow n=4\div2\Rightarrow n=2\)
Vậy \(n\in\left\{1;2\right\}\) thì \(4n-5⋮2n-1\)
tìm n thuộc N để
a, n+8 chia hết cho n+1
b, 2n +11 chia hết cho n-3
c, 4n -3 chia hết cho 2n +1
a, n + 8 chia hết cho n + 1
=> n + 1 + 7 chia hết cho n + 1
=> 7 chia hết cho n + 1
=> n + 1 \(\in\)Ư ( 7 )
Mà Ư(7) = { 1 ; 7 }
+> n + 1 = 1 => n = 0
+> n + 1 = 7 => n = 6
b,
2n + 11 chia hết cho n - 3
=> 2n - 6 + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\)Ư ( 17 )
Mà Ư(17) = { 1 ; 17 }
+> n - 3 = 1 => n = 4
+> n - 3 = 17 => n = 20
c,
4n - 3 chia hết cho 2n + 1
=> 4n + 2 - 5 chia hết cho 2n + 1
=> 5 chia hết cho 2n + 1
=> 2n + 1 \(\in\)Ư ( 5 )
Mà Ư(5) = { 1 ; 5 }
+> 2n + 1 = 1 => n = 0
+> 2n + 1 = 5 => n = 2
Tìm n thuộc N để:
a) n+6 chia hết cho n, b)4n +5 chia hết cho n, c) 38-3n chia hết cho n
d) n+5 chia hết cho n+1; e) 3n+4 chia hết cho n-1 ;g) 2n +1 chia hết cho 16-3n
Hello !!!!!!! I love you !!!!! Thanks you very much
Tìm n thuộc N để:
a) n+6 chia hết cho n, b)4n +5 chia hết cho n, c) 38-3n chia hết cho n
d) n+5 chia hết cho n+1; e) 3n+4 chia hết cho n-1 ;g) 2n +1 chia hết cho 16-3n
a.1;6
b.1;5
c.n={1;2;19;38}
d.n={0;1;3}
e.n={2;8}
g.n=3