So sánh \(\left(\frac{1}{3}\right)^{500}\) với \(\left(\frac{1}{5}\right)^{300}\)
so sánh: \(\left(\frac{-1}{5}\right)^{300}\)và \(\left(\frac{-1}{3}\right)^{500}\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
Ta có : \(\left(-\frac{1}{5}\right)^{300}=\left(-\frac{1}{5}\right)^{3.100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(-\frac{1}{3}\right)^{5.100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}\)
Mà \(125< 243\Rightarrow\frac{1}{125}>\frac{1}{243}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)
\(=>\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
kết quả so sánh x= \(\frac{\left(1\right)^{300}}{5}\)va y=\(\frac{\left(1\right)^{500}}{3}\)
bài 4: so sánh
a) \(\left(\frac{-1}{5}\right)^{300}\) và \(\left(\frac{-1}{3}\right)^{500}\)
b) \(-\left(-2\right)^{300}\) và \(\left(-3\right)^{200}\)
giúp mk với mai mk nộp rồi thanks nhiều
Ta có : (-1/5)^300=(-1/5^3)100=(-1/125)^100
(-1/3)^500=(-1/3^5)^100=(-1/243)^100
vì (-1/243)^100<(-1/125)^100→(-1/5)^300>(-1/3)^500
b, ta có:-(-2)^300=(2^3)^100=8^100
(-3)^200=(-3^2)^100=9^100
vì 8^100<9^100→-(-2)^300<(-3)^200
So sánh (-3)5 và (-3)4
\(\left(-\frac{1}{5}\right)^{300}\) và \(\left(-\frac{1}{3}\right)^{500}\)
\(\left(-\frac{1}{2}\right)^{5^{1^3}}\) và \(\left(-\frac{1}{3}\right)^{3^{1^5}}\)
mik đg cần gấp ai giú mik zơi:
1.so sánh
a)\(\left(\frac{-1}{5}\right)^{300}và \left(\frac{-1}{3}\right)^{500}\)
b)\(2^{90}và 5^{36}\)
a) Ta có :\(\left(\frac{-1}{5}\right)^{300}=\frac{-1^{300}}{5^{300}}=\frac{1}{125^{100}}\)
\(\left(\frac{-1}{3}\right)^{500}=\frac{-1^{500}}{3^{500}}=\frac{1}{243^{100}}\)
Mà \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)Ta có :\(2^{90}=\left(2^{15}\right)^6=32768^6\)
\(5^{36}=\left(5^6\right)^6=15625^6\)
Vì \(32768^6>15625^6\Rightarrow2^{90}>5^{36}\)
a.Ta có: \(\left(\frac{-1}{5}\right)^{300}=\left(\frac{-1}{5}^3\right)^{100}=\left(\frac{-1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(\frac{-1}{3}\right)^{500}=\left(\frac{-1}{3}^5\right)^{100}=\left(\frac{-1}{243}\right)^{100}=\left(\frac{1}{234}\right)^{100}\)
Mà: \(\frac{1}{125}>\frac{1}{234}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{234}\right)^{100}\)
Vậy \(\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b.Ta có: \(2^{90}=\left(2^{10}\right)^9=1024^9\)
\(5^{36}=\left(5^4\right)^9=625^9\)
Mặt khác: \(1024>625\Rightarrow1024^9>625^9\)
Vậy \(2^{90}>5^{36}\)
So sánh với 3
\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+....+\left(1+\frac{2}{n^2+3n}\right)\)
Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3
Giả sử A < 3 đúng với n = k. Ta có:
$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)<3$A=(1+12 )+(1+15 )+(1+19 )+...+(1+2k2+3k )<3
$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k2+3k+2k(k+3) )
$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3)
Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:
$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2(k+1)2+3(k+1) ) $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4)
Ta sẽ có:
$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2k2+2k+1+3k+3 )
$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +k2+5k+6k2+5k+4
$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(k+2)(k+3)(k+1)(k+4) $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4)
Vậy A đúng với n = k + 1 thì A đúng với n = k
Vậy A < 3 là điều phải chứng minh.
(Phương pháp quy nạp toán học)
Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3
Giả sử A < 3 đúng với n = k. Ta có:
$$
$$
$$
Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:
$$ $$
Ta sẽ có:
$$
$$
$$ $$
Vậy A đúng với n = k + 1 thì A đúng với n = k
Vậy A < 3 là điều phải chứng minh.
(Phương pháp quy nạp toán học)
Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3
Giả sử A < 3 đúng với n = k. Ta có:
$$
$$
$$
Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:
$$ $$
Ta sẽ có:
$$
$$
$$ $$
Vậy A đúng với n = k + 1 thì A đúng với n = k
Vậy A < 3 là điều phải chứng minh.
(Phương pháp quy nạp toán học)
A=\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)
So sánh A với 3
Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3
Giả sử A < 3 đúng với n = k. Ta có:
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)< 3\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}\)
Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)\) \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)
Ta sẽ có:
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\) \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)
Vậy A đúng với n = k + 1 thì A đúng với n = k
Vậy A < 3 là điều phải chứng minh.
(Phương pháp quy nạp toán học)
so sánh với 3
các bạn giúp mik với
\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)
\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)
\(=\left(1+1+1\right)+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)
\(=3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)
Có: \(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}>0\)
\(1+1+1+...+1>0\)
=> \(3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)>3\)
Hay \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)>3\)
Bài 1 : cho 2 biểu thức
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
So sánh A với \(\frac{1}{21}\)
So sánh B với \(\frac{11}{21}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21