Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khải Thiên Vương
Xem chi tiết
soyeon_Tiểu bàng giải
21 tháng 7 2016 lúc 11:31

Ta có:

(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100

(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100

Vì 125100 < 243100

=> 1/125100 > 1/243100

=> (-1/5)300 > (-1/3)500

Hà Thị Quỳnh
21 tháng 7 2016 lúc 11:40

Ta có : \(\left(-\frac{1}{5}\right)^{300}=\left(-\frac{1}{5}\right)^{3.100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)

            \(\left(-\frac{1}{3}\right)^{500}=\left(-\frac{1}{3}\right)^{5.100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}\)

Mà \(125< 243\Rightarrow\frac{1}{125}>\frac{1}{243}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)

\(=>\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)

Sarah
21 tháng 7 2016 lúc 13:11

Ta có:

(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100

(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100

Vì 125100 < 243100

=> 1/125100 > 1/243100

=> (-1/5)300 > (-1/3)500

quachtxuanhong23
Xem chi tiết
Charlie Nhật Nam
5 tháng 11 2015 lúc 19:01

x<y nhé bạn :)

 

Quỳnh Ngân
Xem chi tiết
Alone
2 tháng 11 2016 lúc 20:52

Ta có : (-1/5)^300=(-1/5^3)100=(-1/125)^100

(-1/3)^500=(-1/3^5)^100=(-1/243)^100

vì (-1/243)^100<(-1/125)^100→(-1/5)^300>(-1/3)^500

b, ta có:-(-2)^300=(2^3)^100=8^100

(-3)^200=(-3^2)^100=9^100

vì 8^100<9^100→-(-2)^300<(-3)^200

 

Vương Quốc Anh
Xem chi tiết
Hoàng Quốc Huy
22 tháng 12 2015 lúc 11:11

a,>

b,=

c,>

Chắc đấy! Tick nhé!

ngọc tỷ
Xem chi tiết
Phạm Tuấn Đạt
2 tháng 11 2017 lúc 12:11

a) Ta có :\(\left(\frac{-1}{5}\right)^{300}=\frac{-1^{300}}{5^{300}}=\frac{1}{125^{100}}\)

\(\left(\frac{-1}{3}\right)^{500}=\frac{-1^{500}}{3^{500}}=\frac{1}{243^{100}}\)

Mà \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\)

\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)

b)Ta có :\(2^{90}=\left(2^{15}\right)^6=32768^6\)

\(5^{36}=\left(5^6\right)^6=15625^6\)

Vì \(32768^6>15625^6\Rightarrow2^{90}>5^{36}\)

Hồ Bảo Trâm
2 tháng 11 2017 lúc 12:24

a.Ta có: \(\left(\frac{-1}{5}\right)^{300}=\left(\frac{-1}{5}^3\right)^{100}=\left(\frac{-1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)

\(\left(\frac{-1}{3}\right)^{500}=\left(\frac{-1}{3}^5\right)^{100}=\left(\frac{-1}{243}\right)^{100}=\left(\frac{1}{234}\right)^{100}\)

Mà: \(\frac{1}{125}>\frac{1}{234}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{234}\right)^{100}\)

Vậy \(\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)

b.Ta có: \(2^{90}=\left(2^{10}\right)^9=1024^9\)

\(5^{36}=\left(5^4\right)^9=625^9\)

Mặt khác: \(1024>625\Rightarrow1024^9>625^9\)

 Vậy \(2^{90}>5^{36}\)

Hồng Minh Nguyễn Thị
Xem chi tiết
Nguyễn Hoàng Tiến
20 tháng 5 2016 lúc 12:06

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)<3$A=(1+12 )+(1+15 )+(1+19 )+...+(1+2k2+3k )<3

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k2+3k+2k(k+3) )

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) 

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2(k+1)2+3(k+1) )  $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4) 

Ta sẽ có:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2k2+2k+1+3k+3 )

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +k2+5k+6k2+5k+4 

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(k+2)(k+3)(k+1)(k+4)  $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4) 

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

l҉o҉n҉g҉ d҉z҉
20 tháng 5 2016 lúc 15:23

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$$

$$

$$

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$$  $$

Ta sẽ có:

$$

$$

$$ $$

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$$

$$

$$

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$$  $$

Ta sẽ có:

$$

$$

$$ $$

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

Phan Thảo Linh Chi
Xem chi tiết
Nguyễn Hoàng Tiến
20 tháng 5 2016 lúc 11:17

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)< 3\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}\)

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)\)  \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)

Ta sẽ có:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\) \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

Hồng Minh Nguyễn Thị
Xem chi tiết
Nguyễn Trần An Thanh
20 tháng 5 2016 lúc 10:19

\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)

\(=\left(1+1+1\right)+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

\(=3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

Có: \(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}>0\)

\(1+1+1+...+1>0\)

=> \(3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)>3\)

Hay \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)>3\)

Jenny phạm
Xem chi tiết
Edogawa Conan
23 tháng 8 2018 lúc 21:18

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

               \(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)

               \(=\frac{1.2....18.19}{2.3...19.20}\)

               \(=\frac{1}{20}>\frac{1}{21}\)

Vậy A > 1/21