Cho biểu thức:
P=5x+8/x+2
Tìm x thuộc z để P thuộc z
Cho biểu thức M (x/x2 - 25 - x-5/x2 + 5x) : 2x-5/x2+ x
a) rút gon biểu thức M
b) Tính giá trị của M khi x = 2,5
c) Tìm x để M = 1
e) Tìm x thuộc Z để M thuộc Z
tìm x thuộc z để biểu thức có giá trị lớn nhất: x/5x-2
tìm x thuộc z để biểu thức có giá trị lớn nhất: x/5x-2
Cho biểu thức
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
a)Rút gọn B
b)Tìm x thuộc Z để B thuộc Z
a) Điều kiện : \(x\ne2;x\ne3\)
\(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)
\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)
b) Điều kiện \(x\in Z;x\ne2;x\ne3\)
Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên
\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)
mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)
Toán học - Lớp 9 |
1) cho Biểu thức P= (x^3+8/x^2-4)+x+2
a) rút gọn P
b)tìm x thuộc Z để P thuộc Z
c) Cho x>2 , tìm Min của P
2) tìm x để P = 4x+3/x^2+1 thuộc Z
3) giống Bài 2 nhưng x thuộc Z
Cho biểu thức A=( x/x+2 + 5x-12/5x2-15x - 8/5x2 +10x ): x2 - 2x + 2/x2 - x - 6
Tìm đkcđ và rút gọn
Tính A khi x = 1 và x = 3
Tìm x để A min
Tìm x thuộc Z để A thuộc Z
a: \(A=\left(\dfrac{x}{x+2}+\dfrac{4x-12}{5x^2-15x}-\dfrac{8}{5x^2+10x}\right):\dfrac{x^2-2x+2}{x^2-x-6}\)
\(=\left(\dfrac{x}{x+2}+\dfrac{4x-12}{5x\left(x-3\right)}-\dfrac{8}{5x\left(x+2\right)}\right)\cdot\dfrac{\left(x-3\right)\left(x+2\right)}{x^2-2x+2}\)
\(=\left(\dfrac{x}{x+2}+\dfrac{4}{5x}-\dfrac{8}{5x\left(x+2\right)}\right)\cdot\dfrac{\left(x-3\right)\left(x+2\right)}{x^2-2x+2}\)
\(=\dfrac{5x^2+4x+8-8}{5x\left(x+2\right)}\cdot\dfrac{\left(x-3\right)\left(x+2\right)}{x^2-2x+2}\)
\(=\dfrac{5x^2+4x}{5x}\cdot\dfrac{x-3}{x^2-2x+2}=\dfrac{\left(5x+4\right)\left(x-3\right)}{5\left(x^2-2x+2\right)}\)
b: Khi x=1 thì \(A=\dfrac{\left(5+4\right)\left(1-3\right)}{5\left(1-2+2\right)}=\dfrac{9\cdot\left(-2\right)}{5}=\dfrac{-18}{5}\)
Khi x=3 thì \(A=\dfrac{\left(5\cdot3+4\right)\left(3-3\right)}{A}=0\)
Cho biểu thức
A = x+2 / x-1
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x để A > 1
a) Đk: x#2 (*)
Với (*), A=(x - 2 + 5)/(x - 2)= 1 + 5/(x - 2)
A nguyên <=> x-2 thuộc Ư(5)={-5;-1;1;5}
=> S={-3;1;3;7}
b) Đk: x#-3
Với (*), A= (- 2x - 6 + 7)/(x + 3) = -2 + 7/(x+3)
A nguyên <=> x + 3 thuộc Ư(7)={1;-1;7;-7}
=> S = {-2;- 4;4;-10}
Cho biểu thức M = x^2 - 5 / x^2 - 2 ( x thuộc Z) . Tìm x thuộc Z để M có giá trị là số nguyên.
ta có: \(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M có giá trị nguyên
=> 3/x^2 - 2 thuộc Z
=> 3 chia hết cho x^2 - 2
=> x^2-2 thuộc Ư(3)={1;-1;3;-3}
nếu x^2-2 = 1 => x^2 = 3 \(\Rightarrow x=\sqrt{3};x=-\sqrt{3}\) (Loại)
x^2-2 = -1 => x^2 = 1 => x = 1 hoặc x = -1 (TM)
x^2-2 = 3 => x^2 = 5 \(\Rightarrow x=\sqrt{5};x=-\sqrt{5}\) (Loại)
x^2-2 = -3 => x^2 = -1 => không tìm được x
KL:...
tìm a để x^3-3x^2+5x+a chia cho x-2 dư 5
tìm n thuộc Z để g trị biểu thức 2n^2-n+2 chia hết cho g trị bt 2n+1