Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
songngu
Xem chi tiết
Phạm Tuấn Đạt
7 tháng 10 2017 lúc 20:31

Ta có :

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)

\(\RightarrowĐPCM\)

Nguy?n ?́nh Nha
7 tháng 10 2017 lúc 20:50

Cho a/b= c/d (a, b, c, d khác 0) chứng minh rằng a-b/b=c-d/d

Nguyễn Trần Lam Trúc
Xem chi tiết
Huyền
18 tháng 7 2021 lúc 21:17

undefined

Nguyễn đức minh
18 tháng 7 2021 lúc 22:00

Chữ hơi xấu

 

Nguyễn đức minh
18 tháng 7 2021 lúc 22:05

undefinedundefined

NGUYỄN THỊ NGỌC BÍCH
Xem chi tiết
Không Tên
14 tháng 2 2018 lúc 9:50

        \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

          \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\)

NGUYỄN THỊ NGỌC BÍCH
14 tháng 2 2018 lúc 9:52

cảm ơn bạn nhé

dũng lê
Xem chi tiết
Aoidễthương
Xem chi tiết
Hello Hello
Xem chi tiết
Họ Và Tên
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 12:29

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)

\(=abcd+bd+cd+ab\left(1-c\right)+ad\left(1-b\right)+ac\left(1-d\right)+bc\left(1-d\right)+\left(1-a-b-c-d\right)\)

\(>1-a-b-c-d\)

Zata
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
7 tháng 3 2023 lúc 17:32

Theo đề bài ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )

Theo tính chất dãy tỉ số bằng nhau ta có :

\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)  ( 2 )

Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )

Từ ( 2 ) , ( 3 ) 

 = > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )

 

nguyen van quyen
Xem chi tiết
Hồng Anh
30 tháng 8 2016 lúc 14:04

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)

Th1:a+b+c+d=0=>\(\frac{a+b+c+d}{a+b+c+d}=\frac{0}{a+b+c+d}=0suyra\frac{a+b}{b+c}=\frac{c+d}{d+a}=0\)

Th2:a+b+c+d khác 0=>\(\frac{a+b+c+d}{a+b+c+d}=1\)suy ra\(\frac{a+b}{b+a}=\frac{c+d}{d+a}=1\)=>(a+b)(d+a)=(b+a)(c+d)=>a+d=c+d<=>a=c

Vậy a+b+c+d=0 hoặc a=c

 ❤♚ℳℴℴทℛℴƴຮ♚❤
7 tháng 3 2020 lúc 18:26

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Khách vãng lai đã xóa
Lê Anh Dũng
Xem chi tiết