Giải hệ phương trình: \(\hept{\begin{cases}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}16x^3y^3-9y^3=\left(2xy-y\right)\left(4xy^2+3\right)\\4x^2y^2-2xy^2+y^2=3\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}2x^2-xy=1\\4x^2+4xy-y^2=7\end{cases}}\)
giải hpt:
1, \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
2. \(\hept{\begin{cases}x^3-y^3=9x+9y\\x^2-y^2=3\end{cases}}\)
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)
b,
\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)
Tự xử đoạn còn lại nhé
Giải hệ phương trình:
\(\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}2\left(x+y\right)^3+4xy-3=0\\\left(x+y\right)^4+2y^2+x+1=2x^2+4xy+3y\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\\x^2-2y^2+2x+y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
\(\Leftrightarrow x^2+2y-4x=4x^2-4xy^2+y^4-2y+4\)
\(\Leftrightarrow2y+2y-4x=4x^2-x^2-4xy^2+y^4+4\)
\(\Leftrightarrow4y-4x=3x^2-y^2\left(4x-y^2\right)+4\)
\(\Leftrightarrow4y-4x-4=3x^2-y^2\left(4x-y^2\right)\)
\(\Leftrightarrow4\left(y-x-1\right)=3x^2-y^2\left(4x-y^2\right)\)
\(\Leftrightarrow4\left(y-x-1\right)=0\)
\(\Leftrightarrow y-x-1=\frac{0}{4}\)
\(\Leftrightarrow y-x-1=0\)
\(\Leftrightarrow y-x=0+1\)
\(\Leftrightarrow y-x=1\)
Vậy \(\hept{\begin{cases}y=x+1\\x=y-1\end{cases}}\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}y^3-x^2=2\\x^2+5y^2+2y-4xy-3=0\end{cases}}\)