Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Học Toán Kém
Xem chi tiết
gorosuke
Xem chi tiết
Phạm Thị Thùy Linh
31 tháng 8 2019 lúc 21:52

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)

\(=\left(ab^3-a^3b\right)+\left(bc^3-ac^3\right)+\left(a^3c-b^3c\right)\)

\(=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)\)

\(=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c-abc+b^2c\right)\)

trần minh châu
Xem chi tiết
Trần Uyên Trâm
Xem chi tiết
Trịnh Quỳnh Nhi
10 tháng 11 2017 lúc 22:10

a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3) =a(b^3-a^3+a^3-c^3)+b(c^3-a^3)+c(a^3-b^3) = -a(a^3-b^3)-a(c^3-a^3)+b(c^3-a^3)+c(a^3-b^3) = (a^3-b^3)(c-a)-(c^3-a^3)(a-b) = (a-b)(c-a)(a^2+ab+b^2)-(a-b)(c-a)(c^2+ac+b^2) = (a-b)(c-a)(a^2+ab+b^2-c^2-ac-b^2) = (a-b)(c-a)(a^2+ab-c^2-ac)

Có vẻ nhìn hơi rối mắt bạn thông cảm nha

Atsushi Nakajima
Xem chi tiết
『 ՏɑժղҽՏՏ 』ILY ☂ [ H M...
8 tháng 7 2021 lúc 11:02

33333333333332233322322322223222232222222)

=(ab)(bc)[(ac)(a+c)+b(ac)]

=(ab)(bc)(ac)(a+b+c)

Khách vãng lai đã xóa
Phan Thùy Dung
8 tháng 7 2021 lúc 11:14

ko bt đâu nhá!

Khách vãng lai đã xóa
Nguyễn Hồng Pha
Xem chi tiết
Akai Haruma
28 tháng 10 2018 lúc 0:20

Lời giải:

\(a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)\)

\(=a(b^3-c^3)-b[(b^3-c^3)+(a^3-b^3)]+c(a^3-b^3)\)

\(=(b^3-c^3)(a-b)-(a^3-b^3)(b-c)\)

\(=(b-c)(a-b)(b^2+bc+c^2)-(a-b)(b-c)(a^2+ab+b^2)\)

\(=(a-b)(b-c)(b^2+bc+c^2-a^2-ab-b^2)\)

\(=(a-b)(b-c)[(c-a)(c+a)+b(c-a)]\)

\(=(a-b)(b-c)(c-a)(c+a+b)\)

Bùi Đạt Khôi
Xem chi tiết
Nunalkes Thanh
Xem chi tiết
Kim Mi Young
14 tháng 8 2021 lúc 19:19

Ta có: VT=(a+b+c)3−a3−b3−c3

=[(a+b+c)3−a3]−(b3+c3)

=(b+c)[(a+b+c)2+(a+b+c)a+a2]−(b+c)(b2−bc+c2)

=(b+c)(3a2+3ab+3bc+3ca)

=3(b+c)[a(a+b)+c(a+b)]

=3(a+b)(b+c)(c+a)=VP (Đpcm)

Thật ra mình làm theo đề thấy nó đáng ra phải là chứng minh chứ ko phải phân tích . chúc học tốt!

Khách vãng lai đã xóa
Đặng Kim Ân Trần
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 10:50

Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Leftrightarrow x+y+z=a+b+c\)

Do đó \(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(\Leftrightarrow A=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ \Leftrightarrow A=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow A=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(c+a-b+a+b-c\right)\\ \Leftrightarrow A=3\cdot2b\cdot2c\cdot2a=24abc\)

Công ty cổ phần BINGGROUP © 2014 - 2024
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn