1, (3x-2) . (2y-3)
2, tìn n thuộc N biết
1 + 2 + 3 +...+ n = 820
Tìm n thuộc N :
1+2+3+......+n = 820
Từ công thức:1+2+3+.......+n=\(\frac{n.\left(n+1\right)}{2}\)
Ta có:1+2+3.........+n=820
=>\(\frac{n.\left(n+1\right)}{2}\)=820
=>n.(n+1)=820.2
=>n.(n+1)=1640
=>n.(n+1)=40.41
=>n=40
tìm n thuộc N , Biết
1 + 2 + 3 + ... + n = 820
\(1+2+3+...+n=820;n\in N\)
\(\Leftrightarrow\frac{\left[\left(n+1\right)\left(n-1+1\right)\right]}{2}=820\)
\(\Rightarrow\frac{n+1}{2}=820\)
\(\Rightarrow n+1=1640\)
\(\Rightarrow n=1639\)
Tìm n thuộc Z biết
4n+3 chia hết cho 3n-2
2n+3 chia hết chon-1
n^2+5n-1 chia hết cho n-3
n^2 -5 chia hết cho n+4
2) Tìm x,y thuộc Z
xy+2y-3x=11
4x-xy+2y+3=0
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
2n+3 chia hết cho n-1
<=> 2n+3-2(n-1) chia hết cho n-1
<=>5 chia hết cho n-1
<=> n-1 E {-1;1;5;-5}
<=> n E {0;2;6;-4}
bài nào chứ mấy bài này dài ngoằng =((
Vì vai trò m, n như nhau, giả sử m≥n
Xét các trường hợp:
Nếu m=n thì 2m+1⋮m⇒m=n=1 Nếu m>n, đặt 2n+1=pm (p∈N∗)Vì 2m>2n⇒2m>2n+1=pm⇒p<2⇒p=1
Khi p=1 thì: 2n+1=m⇒2(2n+1)+1=2m+1⋮n⇒4n+3⋮n⇒3⋮n⇒n=1;3
Với n=1 thì m=3
Với n=3 thì m=7
Vậy (m;n)={(1;1); (3;1); (7;3)}
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào giá trị của biến:
a/ x(3x+12)-(7x-20)+x2(2x-3)-x(2x2+5)
b/2y(y2+y+1)-2y2(y+1)-2(y+10)
c/5(3xn+1-yn-1)+3(xn+1+5yn-1)-5(3xn+1+2yn-1)-(3xn+1-10)
Tìm n thuộc N* biết:
a) 2+ 4+ 6 + ... + 2n = 210
b) 1 + 3 + 5 +... + (2n - 1) = 225
c) 1 + 2 + 3 +... + n = 820
d) 2 + 4 + 6 +... + 2n = 756
a) 2 + 4 + 6 + ... + 2n = 210
1.2 + 2.2 + 2.3 + ... + 2n = 210
2.(1+2+3+...+n) = 210
1 + 2 + 3 + ... + n = 105
\(\frac{n\left(n+1\right)}{2}\)= 105
n(n+1) = 210
n(n+1) = 14.15
=> n = 14
b) 1+3+5+...+(2n-1)=225
\(\frac{\left(2n-1+1\right).n}{2}\) =225
\(\frac{2n.n}{2}\) =225
\(\frac{2.n^2}{2}\) =225
\(n^2\) =225
Ta có: \(n^2\) =225 = \(3^2\).\(5^2\)= \(\left(15\right)^2\)
=> n = 15
Chứng Minh rằng các biểu thức sau không phụ thuộc vào biến
A=x(x + 2y) - 2x (3x - y) + 5 (x^2 - xy) - (20 - xy)
B=x^2 (2x - 3) -x (2x^2 + 5) + 3x^2 + 5x + 20
C=5(3x^n - y^(n-2) )+3(x^n +5y^(n-2))-b(3x^n+2y^(n-2)) - (3n^n-10)
A=x(x + 2y) - 2x (3x - y) + 5 (x2 - xy) - (20 - xy)
=x2+2xy-6x2+2xy+5x2-5xy-20+xy
=-20
B=x2 (2x - 3) -x (2x2 + 5) + 3x2 + 5x + 20
=2x3-3x2-2x3+-5x+3x2+5x+20
Câu cuối bạn viết ko rõ
1) tính các biểu thức sau
a) 5x(2x^n-1-y^n)-2x^n-2(5x-y^3)+xy^3(5y^n-3-2x^n-3) (với x thuộc N và x>=3)
b) 3x^n-2(x^n+2-y^n+2)+y^n+2(3x^n-2-y^n-2) (với x thuộc N và n>=2)
2) rút gọn biểu thức rồi tính giá trị
x^10-2006x^9+2006x^8-2006x^7+2006x^6+...-2006x+2006 biết x=2005
3) chứng tỏ rằng biểu thức sau luôn luôn không âm với mọi giá trị của x và y
A=x^2+y^2-(y(3x-2y)-(x(x+2y)-y(y-x)))
bài 5 đa thức N thỏa mãn điều kiện
a) (3x^5-4x^4+6x^3)=(-2x^2).N b) N.(-1/3x^2y^3)=6x^4y^5-3x^3y^4+1/2x^4y^3z c) x^3-3x^2y+3xy^2-y^3=N.(y-x) d) x^4-2x^2y^2+y^4=(y^2-x^2).N
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)