tìm min của :
\(C=\frac{|x-2017|+2018}{|x-2017|+2019}\)
TÌM GTNN CỦA
\(C=\frac{|x-2017|+2018}{|x-2017|+2019}\)
\(C=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
Vì \(\left|x-2017\right|\ge0;\forall x\)
\(\Rightarrow\left|x-2017\right|+2019\ge2019;\forall x\)
\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019};\forall x\)
\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019};\forall x\)
\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge\frac{2018}{2019};\forall x\)
Dấu"="Xảy ra \(\Leftrightarrow\left|x-2017\right|=0\)
\(\Leftrightarrow x=2017\)
Vậy \(C_{min}=\frac{2018}{2019}\)\(\Leftrightarrow x=2017\)
tìm x , biết :
\(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
Tìm GTNN của biểu thức \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)
\(A=1-\frac{1}{\left|x-2017\right|+2019}\)
A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất
khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất
khi \(\left|x-2017\right|+2019\)nhỏ nhất
mà |x - 2017| \(\ge0\)
=> |x - 2017| + 2019 \(\ge2019\)
Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017
\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\)
\(A=\frac{2018}{2019}\)
Ta có : \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
Ta có : \(\left|x-2017\right|\ge0\)
\(\Rightarrow\left|x-2017\right|+2019\ge2019\)
\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019}\)
\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019}\)
\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge1-\frac{1}{2019}=\frac{2018}{2019}\)
Hay : \(A\ge\frac{2018}{2019}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)
Vậy : min \(A=\frac{2018}{2019}\) tại \(x=2017\)
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
Tìm x biết
a) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
\(b)\) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(1-\frac{2}{x+1}=\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=1-\frac{2017}{2019}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2}{2019}\)
\(\Leftrightarrow\)\(x+1=2019\)
\(\Leftrightarrow\)\(x=2019-1\)
\(\Leftrightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
Tìm giá trị nhỏ nhất của biểu thức C=\(\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
Tìm x
\(\frac{x-2017}{2015.2016}+\frac{x-2018}{2016.2017}+\frac{x-2019}{2017.2018}+\frac{x-2020}{2018.1019}=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{1018}\)
cho a,b,c thỏa mãn: \(\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức : A=\(A=\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}\times b^{2018}\times c^{2019}}\)
Tìm x
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=3\)
\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=3\)
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=0\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right)=0\)
\(\Leftrightarrow x+2020=0\)( vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}>0\) )
\(\Leftrightarrow x=-2020\)
Vậy ...