Cho tứ giác ABCD .GỌi M,N thứ tự là tủng điểm của BC,DA. E là giao điểm của AM và BN ; F là giao điểm của CN và DM. Chứng minh diện tích tứ giác NEMF bằng tổng diện tích của 2 tam giác AEB và tam giác DFC
Cho hình bình hành ABCD có BC=2AB . Gọi M N thứ tự là trung điểm của các cạnh BC và AD
a) Chứng minh tứ giác ABMN là hình thoi
b) Gọi I là giao điểm của BN và AM , K là giao điểm của NC và MD . Tứ giác MINK là hình gì ?
c) Gọi E là giao điểm của BN và CD . Tam giác BCE là tam giác gì ?
d) Tìm điều kiện của hình bình hành ABCD để MINK là hình vuông ?
GIÚP EM NỐT BÀI NÀY ĐỂ EM NỘP VỚI Ạ :((
a: Xét tứ giác ABMN có
AN//BM
AN=BM
Do đó: ABMN là hình bình hành
mà AB=BM
nên ABMN là hình thoi
Cho hình bình hành ABCD có BC=2AB. Gọi M, N thứ tự là trung điểm của BC và AD. Gọi P là giao điểm của AM với BN, Q là giao điểm của MD với CN, K là giao điểm của tia BN với CD a, Tứ giác MDKB là hình thang b, Tứ giác PMQN là hình gì? c)cho AB=4cm .tính diện tích tứ giác pmqn
Cho hbh ABCD có BC=2AB. Gọi M, N thứ tự lần lượt là tđ' của BC và AD. Gọi. P là giao điểm của AM với BN, Q là giao điểm của MD với CN. K là giao điểm BN với CD.
a) C/m: Tứ giác MDKB là hình thang
b)Tứ giác PMQN là hình gì? Chứng minh?
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Suy ra: DM//BN
hay DM//BK
=>BMDK là hình thang
b: Xét tứ giác BMNA có
BM//NA
BM=NA
Do đó: BMNA là hình bình hành
mà BM=BA
nên BMNA là hình thoi
Suy ra: MA vuông góc với BN tại P
Ta có: MD//BN
nên MQ//PN
Xét tứ giác AMCN có
MC//AN
MC=AN
DO đó: AMCN là hình bình hành
Suy ra: AM//CN
=>PM//NQ
Xét tứ giác PMQN có
PM//QN
PN//QM
Do đó: PMQN là hình bình hành
mà \(\widehat{MPN}=90^0\)
nên PMQN là hình chữ nhật
Cho hình bình hành ABCD có BC=2AB. Gọi M,N thứ tự là trung điểm của các cạnh BC và AD.
a) Chứn ming rằng: ABMN là hình thoi.
b) Gọi I là giao điểm của BN và AM, K là giao điểm của NC và MD, E là giao điểm của BN và CD. Tứ giác MINK là hình gì? Vì sao?
c) Tìm điều kiện của hình bình hành ABCD để MINK là hình vuông.
bài 1:Cho hình bình hành ABCD có BC=2AB.Gọi M,N thứ tự là trung điểm của BC và AD.Gọi P là giao điểm của AM với BN,Q là giao điểm của MD với CN,K là giao điểm của tia BN với tia CD
a)chứng minh tứ giác MDKB là hình thang?
b)tứ giác PMQN là hình gì?chứng minh?
c)hình bình hành ABCD có thêm điều kiện gì thì PMQN là hình vuông?
bài 2:Cho hình bình hành ABCD có AB=2AD.gọi E,F theo thứ tự là trung điểm của AB và CD.
a)chứng minh tứ giác AECF là hình bình hành?
b)Gọi M là giao điểm của AF va DE.N là giao điểm của BF và CE.Chứng minh tứ giác EMFN là hình chữ nhật?
c)Hình bình hành ABCD có thêm điều kiệm gì thì EMFN là hình vuông?
Câu 1:
a)
\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)
\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)
mà \(BC=AD\) (ABCD là hình bình hành)
\(\Rightarrow AN=ND=BM=MC\) (1)
mà ND // BM
=> BMDN là hình bình hành
=> BN // MD (2)
=> MDKB là hình thang
b)
MC = AN (theo 1)
mà MC // AN (ABCD là hình bình hành)
=> AMCN là hình bình hành
=> AM // CN (3)
Từ (2) và (3)
=> MPNQ là hình bình hành (4)
BM = AN (theo 1)
mà BM // AN (ABCD là hình bình hành)
=> ABMN là hình bình hành
mà AB = BM \(\left(=\frac{1}{2}BC\right)\)
=> ABMN là hình thoi
=> AM _I_ BN
=> MPN = 900 (5)
Từ (4) và (5)
=> MPNQ là hình chữ nhật
c)
MPNQ là hình vuông
<=> MN là tia phân giác của PMQ
mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)
=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến
=> MN là đường cao của tam giác MDA
=> MNA = 900
mà MNA = ABM (ABMN là hình thoi)
=> ABM = 900
mà ABCD là hình bình hành
=> ABCD là hình chữ nhật
Câu 2:
a)
\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)
\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)
mà AB = CD (ABCD là hình bình hành)
=> AE = EB = CF = FD (1)
mà AE // CF (ABCD là hình bình hành)
=> AECF là hình bình hành
b)
AE = FD (theo 1)
mà AE // FD (ABCD là hình bình hành)
=> AEFD là hình bình hành
mà DA = AE \(\left(=\frac{1}{2}AB\right)\)
=> AEFD là hình thoi
=> AF _I_ ED
=> EMF = 900 (2)
EB = FD (theo 1)
mà EB // FD (ABCD là hình bình hành)
=> EBFD là hình bình hành
=> EM // NF
mà EN // MF (AECF là hình bình hành)
=> EMFN là hình bình hành
mà EMF = 900 (theo 2)
=> EMFN là hình chữ nhật
c)
EMFN là hình vuông
<=> EF là tia phân giác của MEN
mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)
=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến
=> EF là đường cao của tam giác ECD
=> EFD = 900
mà EFD = DAE (AEFD là hình thoi)
=> DAE = 900
mà ABCD là hình bình hành
=> ABCD là hình chữ nhật
Bài 1: Tứ giác ABCD có AD=BC. Gọi E F theo thứ tự là trung điểm của AB CD. Gọi O là giao điểm của AD và BC. Gọi H G theo thứ tự là giao điểm của EF với OD và OC. Chứng minh rằng OG=OH
Bài 2: Cho tam giác ABC đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AM=AN. Gọi K là giao điểm của CA và NB. Chứng minh rằng NK=1/2KB
cho điểm O nằm trong tứ giác ABCD . E,F,G,H theo thứ tự là trung điểm của AB,BC,CD,DA . Gọi M,N,P,Q theo thứ tự là các điểm đối xứng với O qua E,F,G,H
CM : MNPQ là hbh và có các cạnh = đường chéo của tứ giác ABCD
Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.
Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).
Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.
Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).
Khi đó ta có:
\(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)
Vậy ta đã chứng minh xong bài toán.
Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC
Bài 1: Cho hình bình hành ABCD có BC = 2AB. Gọi M, N theo thứ tự là trung điểm của BC và AD. Gọi P là giao điểm của AM với BN, Q là giao điểm của MD với CN, K là giao điểm của tia BN với tia CD
a) Chứng minh tứ giác MBKD là hình thang
b) PMQN là hình gì?
c) Hình bình hành ABCD có thêm điều kiện gì để PMQN là hình vuông
a) Chứng minh tứ giác MBKD là hình thang.( bạn tự vẽ hình nhé!)
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành AD = BC AN = ND = BM = MC
Và AD // BC=> ND // BM
Xét tứ giác MBND, ta có:
ND // BM
ND = BM
Tứ giác MBND là hình bình hành.
NB // MD . Mà NB giao với MD = {K}=> B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
=>Tứ giác MBKD là hình thang ( đpcm ).
b)
Vì P thuộc BK, Q thuộc MD mà BK // MD QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC PM // QN (2)
Từ (1), (2)=> PMQN là hình bình hành. ( 3 )
Theo CM ở câu a) ANMB là hình thoi ( có 4 cạnh bằng nhau )
AM vuông góc với BN. (4)
Từ (3), (4) PMQN là hình chữ nhật.
c) Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o thì tứ giác ANMB là hình vuông=> AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=> PN = PM
Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )
của luckybaby_98 trên diễn đàn học mãi giống y chang luôn, mih cx có nick trên diễn đàn học mãi mak |
Bài 4: Cho hình bình hành ABCD có AD = 2AB. Gọi M, N lần lượt là trung điểm của BC và AD.a) Chứng minh: Tứ giác AMCN là hình bình hành.b) Chứng minh: ∆BNC vuông tại Nc) Gọi E là giao điểm của AM và BN, F là giao điểm của DM và CN. Chứng minh EF = MN.d) Chứng minh: AC, BD, MN, EF đồng quy.