cho M=1725+244-1321 chứng tỏ rằng M chia hết cho 10
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Tìm chữ số tận cùng của M 1725 244 1321
1725=(174)6.17=......1.17=....7
244=......6
1321=(134)5.13=........1.13=.......3
vậy 1725+244+1321=.....7+...6....3=......6
vậy M có chữ số tận cùng là 6
chứng tỏ 175 + 244 - 1321 chia hết cho 10
Muốn chia hết cho 10 thì tận cùng phải bằng 0
Ta có
5+4-1=0
=> 175+244-1321 chia hết cho 10
Biết m+ 4n chia hết cho 13 chứng tỏ rằng 10m + n chia hết cho 10 và ngược lại chia hểt cho 17
Chứng tỏ rằng
a. (10^7+5) chia hết cho 3 và chia hết cho 5
b. (10^m+8) chia hết cho 2 và chia hết cho 9
a ) Ta có :
107 có 7 số 0 và 1 số 1
Nên khi cộng thêm 5 ta có tổng các chữ số là :
1 + 5 = 6\(⋮\)3
Vì : 107 + 5 có số cuối là 5 nên\(⋮\)5
=> 107 + 5\(⋮\)3 và 5
b ) Ta có :
10m + 8 chẵn
=> 10m + 8\(⋮\)2
Ta có :
10m + 8 có tổng\(⋮\)9
=> 10m + 8\(⋮\)2 và 9
Bài 1: chi A= m2 + m+1 với m thuộc N. Chứng tỏ rằng:
a) A không chia hết cho 2
b) A không chia hết cho 5
Bài 2: Cho P= 2+22+23+...+210
Chứng tỏ rằng:
a) P chia hết cho 3
b) P chia hết cho 31
Bài 3: cho Q=3+32+33+...+312
Chứng tỏ rằng:
a) Q chia hết cho 4
b) Q chia hết cho 10
c) Q chia hết cho 13
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Bài 3:
a,b) \(Q=3+3^2+3^3+...+3^{12}\)
\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)
\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)
Do đó \(Q\vdots 10; Q\vdots 4\)
c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)
\(=13(3+3^4+...+3^{10})\vdots 13\)
Ta có đpcm.
b)
bài 3:cho M = 2 + 2^2 + 2^3 + ... +2^100
a,chứng tỏ rằng M chia hết cho 2
b,chứng tỏ rằng M chia hết cho 3
c,chứng tỏ rằng M chia hết cho 15
d,tìm chữ số tận cùng của M
e,tính M
cần gấppppppppppppppppppppp
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
a,Tính S=4+7+10+13+......2014
b,Chứng minh rằng n.(n+2013)chia hết cho 2 với mọi số tự nhiên n
c,Cho M=2+2^2+2^3+.....2^20.Chứng tỏ rằng M chia cho 15
\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)
A, Chứng tỏ rằng: M = 75.(42017+ 42016 +42 +4 + 1) +25 chia hết cho 10² 6+.