cho 2 đường tròn (O) và (O’) cắt nhau tại A và B.Vẽ dây BC của đường tròn (O) tiếp xúc (O’),dây BD của (O’) tiếp xúc cới đường ttofn (O)
a)CMR:AB2=AC.BD
b)\(\dfrac{BC}{BD}=\sqrt{\dfrac{AC}{AD}}\)
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ dây BC của đường tròn (O) tiếp xúc với đường tròn (O'). Vẽ dây BD của đường tròn (O') tiếp xúc với đường tròn (O). Chứng minh rằng;
a) \(AB^2=AC.AD\)
b) \(\frac{BC}{BD}=\sqrt{\frac{AC}{AD}}\)
Cho hai đường tròn tâm O và tâm O' cắt nhau tại A và B. Vẽ dây BC của đường tròn tâm O tiếp xúc với đường tròn tâm O'. Vẽ dây BD của đường tròn tâm O' tiếp xúc với đường tròn tâm O. CMR:
a) AB2=AC.AD
b)\(\frac{BC}{BD}=\sqrt{\frac{AC}{AD}}\)
1) cho 2 đường tròn (O) và (O') ngoài nhau có các đường kính AOB, CO'D nằm trên đường thẳng nối tâm, có tiếp tuyến chung ngoài MN (M\(\in\)(O) , N\(\in\left(O'\right)\)các đường thẳng AM và DN cắt nhau tại K, các đường thẳng MB và NC cắt nhau tại H. C/m:
a)\(KH\perp AD\)
b) KM.KA=KN.KD
2) Cho 2 đường tròn cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O') tại A. Dây BD của đường tròn (O') tiếp xúc với đường tròn (O) tai B. C/m:
a) BC.AD=AB2
b)\(\frac{BC}{AD}=\frac{AC^2}{BD^2}\)
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O’) tại A. Dây AD của đường trong (O’) tiếp xúc với đường tròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO’, E là điểm đối xứng với A qua B. Chứng minh rằng: AB ⊥ KB
Gọi H là giao điểm của AB và OO’
Vì OO’ là đường trung trực của AB nên OO’ ⊥ AB tại H
Ta có: HA = HB
I là trung điểm của OO’ nên IH ⊥ AB (1)
Trong tam giác ABK, ta có:
HA = HB (chứng minh trên)
IA = IK (tính chất đối xứng tâm)
Suy ra IH là đường trung bình của tam giác ABK
Suy ra IH // BK (2)
Từ (1) và (2) suy ra: AB ⊥ KB
Giúp mình với:
Cho 2 đường tròn O và O' cắt nhau tại A và B ( O và O' nằm ở 2 phía AB). Dây AC của đường tròn (O) tiếp xúc với đường tròn O' tại A. Dây AD của đường tròn(O') tiếp xúc với đường tròn (O) tại A. Hạ OH vuông góc với AC tại H, Hạ OI vuông góc AD tại I. OH cắt O'I tại K
a) CMR: OAO'K là hình bình hành
b) CMR: KB vuông góc với AB
a) Ta thấy \(\widehat{OAH}+\widehat{HAI}=\widehat{OAI}=90^o\) và \(\widehat{O'AI}+\widehat{IAH}=\widehat{O'AH}=90^o\)
nên \(\widehat{OAH}=\widehat{O'AI}\Rightarrow\widehat{AOH}=\widehat{AO'I}\left(1\right)\)
Ta thấy \(\widehat{OAO'}+\widehat{HAI}=\widehat{OAH}+\widehat{HAI}+\widehat{IAO'}+\widehat{HAI}=\widehat{OAI}+\widehat{HAO'}\)
\(=90^o+90^o=180^o\)
Xét tứ giác AHKI ta cũng có \(\widehat{HKI}+\widehat{HAI}=180^o\Rightarrow\widehat{HKI}=\widehat{OAO'}\left(2\right)\)
Từ (1) và (2) suy ra tứ giác OAO'K là hình bình hành (Có các góc đối bằng nhau)
b) Gọi AJ và AJ' là hai đường kính của đường tròn (O) và (O')
Trước hết, ta có J, B, J' thẳng hàng. Thật vậy: \(\widehat{ABJ}+\widehat{ABJ'}=90^o+90^o=180^o\)
Ta chứng minh J, K ,J' cũng thẳng hàng.
Xét tam giác AJJ' có O' là trung điểm AJ', O'K // AJ, O'K = 1/2AJ
Vậy nên K là trung điểm JJ'.
Tóm lại J, B, K ,J' thẳng hàng.Vậy thì \(\widehat{ABK}=\widehat{ABJ'}=90^o\) hay \(KB\perp BA\)
Hình vẽ như trên
a) Ta thấy ^OAH+^HAI=^OAI=90o và ^O'AI+^IAH=^O'AH=90o
nên ^OAH=^O'AI⇒^AOH=^AO'I(1)
Ta thấy ^OAO'+^HAI=^OAH+^HAI+^IAO'+^HAI=^OAI+^HAO'
=90o+90o=180o
Xét tứ giác AHKI ta cũng có ^HKI+^HAI=180o⇒^HKI=^OAO'(2)
Từ (1) và (2) suy ra tứ giác OAO'K là hình bình hành (Có các góc đối bằng nhau)
b) Gọi AJ và AJ' là hai đường kính của đường tròn (O) và (O')
Trước hết, ta có J, B, J' thẳng hàng. Thật vậy: ^ABJ+^ABJ'=90o+90o=180o
Ta chứng minh J, K ,J' cũng thẳng hàng.
Xét tam giác AJJ' có O' là trung điểm AJ', O'K // AJ, O'K = 1/2AJ
Vậy nên K là trung điểm JJ'.
\(\Rightarrow\) J, B, K ,J' thẳng hàng.Vậy thì ^ABK=^ABJ'=90o hay KB⊥BA
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O’) tại A. Dây AD của đường trong (O’) tiếp xúc với đường tròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO’, E là điểm đối xứng với A qua B. Chứng minh rằng: Bốn điểm A, C, E, D cùng nằm trên một đường tròn
Vì AB ⊥ KB nên AE ⊥ KB
Lại có: AB = BE (tính chất đối xứng tâm)
Suy ra: KA = KE (tính chất đường trung trực) (3)
Ta có: IO = IO’ (gt)
IA = IK (chứng minh trên)
Tứ giác AOKO’ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành
Suy ra: OK // O’A và OA // O’K
CA ⊥ O’A (vì CA là tiếp tuyến của đường tròn (O’))
OK // O’A (chứng minh trên)
Suy ra: OK ⊥ AC
Khi đó OK là đường trung trực của AC
Suy ra: KA = KC (tính chất đường trung trực) (4)
DA ⊥ OA (vì DA là tiếp tuyến của đường tròn (O))
O’K // OA (chứng minh trên)
Suy ra: O’K ⊥ DA
Khi đó O’K là đường trung trực của AD
Suy ra: KA = KD (tính chất đường trung trực) (5)
Từ (3), (4) và (5) suy ra: KA = KC = KE = KD
Vậy bốn điểm A, C, E, D cùng nằm trên một đường tròn.3
cho hai đường tròn (o;r) và đường tròn (o'r) tiếp xúc ngoài vs nhau tại A, kẻ tiếp tuyến Ax. Kẻ đường thẳng tiếp xúc vs đường tròn (O) tại B và đt (O') tại C (B,C khác A). BC cắt Ax tại H. Kẻ đường kính BD của đt (O) và đường kính CE của đt (O'). Gọi I là trung điểm của DE.Cm: BC là tiếp tuyến của đường tròn ngoại tiếp \(\Delta\)OIO'
BD//CE
Ax là tiếp tuyến
=>Ax//BD//CE
=>Tâm đường tròn ngoại tiếp ΔOIO' nằm trên Ax
=>BC là tiếp tuyến của đường tròn ngoại tiếp ΔOIO'
Cho DABC vuông tại A (AB < AC). Vẽ đường tròn (O) đường kính AC. Vẽ dây AD của đường tròn (O) sao cho AD \(\perp\) OB tại H.
a) Chứng minh: BD là tiếp tuyến của (O)
b) Đường tròn (O) cắt BC tại E. Chứng minh: BD2 =BE . BC và góc BDE= góc BCD
c) BO cắt AE tại I, BC cắt AD tại M, tia MI cắt AB tại N. Chứng minh: I là trung điểm của MN.
cho nửa đường tròn (O) đường kính AB =2R. vẽ đường tròn tâm K đường kính OB
a) chứng tỏ hai đường tròn (O) và (K) tiếp xúc nhau
b) vẽ dây BD của đường tròn (O) (BD khác đường kính ), dây BD cắt đường tròn (K) tại M. Chứng minh KM // OD