Cho hình vuông ABCD có cạnh a . Tính vec tơ AB.AD
Cho tam giác đều ABC có cạnh là 4a. Tính vec tơ AB.AC
Cho hình vuông ABCD có cạnh là a. Tính vecto AB.AD
Cho tma giác ABC có A=90độ B=60độ và AB=4. Tính vecto AC.CB
Cho hình vuông ABCD cạnh bằng a, độ dài vec tơ \(|2\overrightarrow{OA}-\overrightarrow{\left(OD\right)|}\)tính theo a là:
: Cho hình thang vuông ABCD vuông ở A và D, AB = AD = a, góc C bằng 45 độ . Tính độ dài. các vec tơ CD, BD, CB, AC
giúp mik ba bài này với ^-^
1. Cho hình chữ nhật ABCD có AB = 3a , AD = 4a
a) Tính / vec tơ AD - vec tơ AB / b) Dựng vec tơ u = vec tơ CA - vec tơ AB . Tính / vec tơ u /
2. Cho △ABC đều cạnh a . Gọi I là trung điểm BC
a) Tính / vec tơ AB - vec tơ AC / b) Tính / vec tơ BA - vec tơ BI /
3. Cho △ABC vuông tại A . Biết AB = 6a , AC = 8a . Tính / vec tơ AB - vec tơ AC /
Cho hình vuông ABCD cạnh a.Tính các tích vô hướng sau: a)AB.AD;AB.BD b)(AB+AD).(BD+BC)
a: \(\overrightarrow{AB}\cdot\overrightarrow{AD}=0\)
\(\overrightarrow{AB}\cdot\overrightarrow{BD}=\overrightarrow{AB}\left(\overrightarrow{AD}-\overrightarrow{AB}\right)=-AB^2=-a^2\)
b: \(=\overrightarrow{AB}\cdot\overrightarrow{BD}+\overrightarrow{AB}\cdot\overrightarrow{BC}+\overrightarrow{AD}\cdot\overrightarrow{BD}+\overrightarrow{AD}\cdot\overrightarrow{BC}\)
\(=-a^2-\overrightarrow{BA}\cdot\overrightarrow{BC}+\overrightarrow{DA}\cdot\overrightarrow{DB}+AD^2\)
\(=-0+DA\cdot DB\cdot cos45=a\cdot a\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=a^2\)
Cho hbh ABCD tâm O. M là điểm bất kì nằm trong mặt phẳng. CM: a) vec tơ OA + vec tơ OB + vec tơ OC + vec tơ OD= vec tơ O b) vec tơ MA + vec tơ MC = vec tơ MB + vec tơ MD
Lời giải:
Vì $O$ là tâm hình bình hành nên $O$ là trung điểm của $AC, BD$
$\Rightarrow \overrightarrow{OA}, \overrightarrow{OC}; \overrightarrow{OB}, \overrightarrow{OD}$ là 2 cặp vecto đối nhau
$\Rightarrow \overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}$
$\Rightarrow \overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}$ (đpcm)
b) Theo phần a ta có:
\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OC}\)
\(=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{MO}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{OD}\)
\(=(\overrightarrow{MO}+\overrightarrow{OB})+(\overrightarrow{MO}+\overrightarrow{OD})=\overrightarrow{MB}+\overrightarrow{MD}\) (đpcm)
Cho hình bình hành ABCD. Gọi N là trung điểm cạnh CD. Trên cạnh AC lấy điểm M sao cho AM = 2MC; Phân tích các vec tơ sau theo hai véc tơ ABvà AD
a. vecto ac
b) vecto AM
c) vecto an
Lời giải:
a.
$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$ (tính chất hình bình hành)
b.
$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AC}=\frac{2}{3}(\overrightarrow{AB}+\overrightarrow{AD})$
c.
$\overrightarrow{AN}=\overrightarrow{AC}+\overrightarrow{CN}=\overrightarrow{AC}+\frac{1}{2}\overrightarrow{BA}$
$=\overrightarrow{AB}+\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$
$=\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}$
cho tứ giac ABCD .Goij M và N lần lượt là trung điểm của AB và CD. lấy các điểm P ,Q lần lươt thuộc các đường thẳng AD và BC sao cho vec tơ PA=-2 vec tơ PD, vec tơ QP =-2 vec tơ QC. tính vec tơ MN?? giúp tui